Accumulating evidence suggest that diabetic retinopathy (DR) is a chronic inflammatory disorder. In the prior grant period, we have successfully established that aberrant activation of the canonical Wnt pathway in the retina plays a key pathogenic role in retinal inflammation and neovascularization (NV) in DR. This project represents a logical extension of our previous studies and aims to elucidate the mechanism responsible for the Wnt pathway over-activation in DR. Peroxisome proliferator-activated receptor-? (PPAR?) is a hormone-activated receptor and transcription factor. Two independent clinical studies reported surprise findings that oral administration of fenofibrate, a small molecule PPAR? agonist, confers robust therapeutic effects on DR in type 2 diabetic patients. However, the mechanism for this beneficial effect on DR has not been elucidated, and the function of PPAR? in the retina is unknown. Recently, we have the following finding implicating PPAR? in DR: 1) PPAR? is expressed in the retina. 2) PPAR? expression is down-regulated in the retinas of both type 1 and type 2 diabetic models. 3) Fenofibrate ameliorates retinal inflammation and vascular leakage in DR models. 4) Fenofibrate inhibits Wnt signaling and down-regulates Wnt target genes induced by diabetes and by Wnt ligands. 5) Over-expression of PPAR? alone suppressed Wnt signaling. 6) PPAR? knockout (KO) abolishes the effects of fenofibrate on diabetes-induced retinal vascular leakage. Based on these results, we hypothesize that PPAR? inhibits Wnt signaling and inflammation in the retina, and that the decreased PPAR? expression in the diabetic retina plays an important pathogenic role in DR. To test this hypothesis, we propose the following studies: 1) We will first establish the role of diabetes-induced down-regulation of PPAR? in retinal inflammation and vascular leakage in DR. We will induce diabetes in PPAR?-/- mice and determine if PPAR? KO exacerbates DR. Diabetic PPAR?-/- mice will be treated with fenofibrate to determine if lack of PPAR? abolishes the therapeutic effect of fenofibrate on DR. We will also determine if over-expression of PPAR? in the retina of diabetic rats ameliorates DR. 2) We will test the hypothesis that decreased PPAR? expression in diabetic retina is responsible for the aberrant activation of Wnt signaling in the retina. Specifically, we will investigate if PPAR? KO exacerbates the diabetes-induced Wnt pathway activation in the retina. We will also elucidate the mechanism by which PPAR? down-regulates the Wnt pathway. 3) We will define the mechanism responsible for diabetes-induced down- regulation of PPAR? in the retina. These studies will define novel interactions between PPAR? and Wnt signaling, establish a novel pathogenic mechanism for retinal inflammation in DR and identify an endogenous regulator of Wnt signaling. These studies will also elucidate the mechanism for the fenofibrate's effects on DR and identify a new drug target for the treatment.

Public Health Relevance

Diabetic retinopathy is a common complication of diabetes and a major cause of blindness in the working age population. This project aims to explore a novel pathogenic mechanism, i.e. the role of diabetes-induced down-regulation of PPAR? in the retina in diabetic retinopathy. This project may also identify a new drug target for the development of new treatment for diabetic retinopathy. Moreover, since fenofibrate, a PPAR? agonist, has been shown to have robust therapeutic effects on diabetic retinopathy in patients, this project will elucidate a mechanism for this clinically effective drug for diabetic retinopathy These studies are of clinical relevance and contribute to new drug development for diabetic retinopathy.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY019309-04A1
Application #
8503730
Study Section
Special Emphasis Panel (DPVS)
Program Officer
Shen, Grace L
Project Start
2009-03-01
Project End
2018-03-31
Budget Start
2013-03-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$370,000
Indirect Cost
$120,000
Name
University of Oklahoma Health Sciences Center
Department
Physiology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Hu, Shuqun; Liu, Hua; Ha, Yonju et al. (2015) Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radic Biol Med 79:176-85
Takahashi, Yusuke; Moiseyev, Gennadiy; Ma, Jian-xing (2014) Identification of key residues determining isomerohydrolase activity of human RPE65. J Biol Chem 289:26743-51
Lee, Kyungwon; Shin, Younghwa; Cheng, Rui et al. (2014) Receptor heterodimerization as a novel mechanism for the regulation of Wnt/?-catenin signaling. J Cell Sci 127:4857-69
Qiu, F; He, J; Zhou, Y et al. (2014) Plasma and vitreous fluid levels of Dickkopf-1 in patients with diabetic retinopathy. Eye (Lond) 28:402-9
Ding, Lexi; Cheng, Rui; Hu, Yang et al. (2014) Peroxisome proliferator-activated receptor ? protects capillary pericytes in the retina. Am J Pathol 184:2709-20
Wang, Zhongxiao; Moran, Elizabeth; Ding, Lexi et al. (2014) PPAR? regulates mobilization and homing of endothelial progenitor cells through the HIF-1?/SDF-1 pathway. Invest Ophthalmol Vis Sci 55:3820-32
Zhou, Kelu Kevin; Benyajati, Siribhinya; Le, Yun et al. (2014) Interruption of Wnt signaling in Müller cells ameliorates ischemia-induced retinal neovascularization. PLoS One 9:e108454
Moran, Elizabeth; Ding, Lexi; Wang, Zhongxiao et al. (2014) Protective and antioxidant effects of PPAR? in the ischemic retina. Invest Ophthalmol Vis Sci 55:4568-76
Hu, Yang; Chen, Ying; Lin, Mingkai et al. (2013) Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 54:141-54
Murray, Anne R; Chen, Qian; Takahashi, Yusuke et al. (2013) MicroRNA-200b downregulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model. Invest Ophthalmol Vis Sci 54:1689-97

Showing the most recent 10 out of 37 publications