Corneoscleral biomechanical properties may influence the characteristics of short-term IOP elevations, and thus play an important role in an individual's susceptibility to glaucoma. Our hypotheses are: (a) eyes with certain corneoscleral biomechanical properties (i.e., low stiffness) are more capable of damping IOP (i.e., smaller, slower, and/or shorter elevations), and (b) these corneoscleral biomechanical properties are affected by aging processes resulting in reduced capability to dampen IOP.
The specific aims are:
Aim 1 : To test the prediction that corneoscleral biomechanical properties affect short-term, dynamic IOP variations. We will examine in enucleated canine globes the influence of the natural variance or experimentally altered corneoscleral properties on the parameters of IOP elevations.
Aim 2 : To test the prediction that age-associated differences in corneoscleral biomechanical properties are correlated with the eye's ability to dampen IOP. We will examine whether there are age-related differences in physiologic, short- term IOP dynamics in human eyes. We will then investigate whether the age-associated differences in IOP parameters can be explained by the age-associated differences in the corneoscleral biomechanical properties. A novel ultrasonic technique will be used to non-invasively measure corneal properties in the human eye, establishing feasibility for future in vivo assessment and monitoring of corneoscleral properties. Significance: The proposed studies will detail the influences of the biomechanical characteristics of the corneoscleral shell on short-term IOP elevations, which will lead to the discovery of new measurable and modifiable glaucoma susceptibility factors that will improve clinical management of glaucoma.

Public Health Relevance

Elevated intraocular pressure (IOP) is a primary risk factor for glaucoma. This study will investigate how corneoscleral biomechanical properties influence the characteristics of short-term IOP elevations, leading to the identification of new measurable indices for glaucoma susceptibility.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Chin, Hemin R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Engineering (All Types)
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Palko, Joel R; Tang, Junhua; Cruz Perez, Benjamin et al. (2014) Spatially heterogeneous corneal mechanical responses before and after riboflavin-ultraviolet-A crosslinking. J Cataract Refract Surg 40:1021-31
Cruz Perez, Benjamin; Tang, Junhua; Morris, Hugh J et al. (2014) Biaxial mechanical testing of posterior sclera using high-resolution ultrasound speckle tracking for strain measurements. J Biomech 47:1151-6
Palko, Joel R; Iwabe, Simone; Pan, Xueliang et al. (2013) Biomechanical properties and correlation with collagen solubility profile in the posterior sclera of canine eyes with an ADAMTS10 mutation. Invest Ophthalmol Vis Sci 54:2685-95
Morris, Hugh J; Tang, Junhua; Cruz Perez, Benjamin et al. (2013) Correlation between biomechanical responses of posterior sclera and IOP elevations during micro intraocular volume change. Invest Ophthalmol Vis Sci 54:7215-22
Palko, Joel R; Pan, Xueliang; Liu, Jun (2011) Dynamic testing of regional viscoelastic behavior of canine sclera. Exp Eye Res 93:825-32