Like other areas of the nervous system, the retina is subject to many acquired and inherited neuronal degenerative diseases. Since the retina provides the input for all visual sensory information to the brain, the loss of cells results in viual impairment and potentially complete blindness. Many retinal degenerative diseases affect only a subset of the retinal cells, although, frequently in more advanced disease, loss and reorganization of the entire retina can occur. In mammals, there is very limited regeneration of the degenerated cells;however, in fish, new neurons of all types regenerate from M?ller glia following retinal damage and they are functionally integrated into the existing circuitry. Nevertheless, M?ller glia, the cellular source for regeneration, is present in all vertebrate retins. In the proposal we submitted three years ago, we hypothesized that regeneration from mammalian M?ller glia was limited because they fail to express a key proneural transcription factor, Ascl1, after injury. We proposed to test this hypothesis by virally-mediated expression of Ascl1 in mouse M?ller glia. In the two years of funding, we have tested the hypothesis, and found that viral expression of Ascl1 is sufficient to activate a neurogenic program in mouse M?ller glia, both in dissociated cultures and in the intact retina. The reprogrammed M?ller glia generates cells that resemble neurons in morphology, gene expression and their responses to neurotransmitters. In the next funding period, we propose to further optimize this reprogramming process, using other transcription factors and epigenetic modifiers, and then to test whether Ascl1-reprogrammed Muller glia can provide a source for regeneration in vivo in a newly developed line of transgenic mice.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Greenwell, Thomas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Ueki, Yumi; Reh, Thomas A (2013) EGF stimulates Muller glial proliferation via a BMP-dependent mechanism. Glia 61:778-89
La Torre, Anna; Georgi, Sean; Reh, Thomas A (2013) Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proc Natl Acad Sci U S A 110:E2362-70
Brzezinski 4th, Joseph A; Uoon Park, Ko; Reh, Thomas A (2013) Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence. Dev Biol 384:194-204
McUsic, Andrew C; Lamba, Deepak A; Reh, Thomas A (2012) Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33:1396-405
Bermingham-McDonogh, Olivia; Reh, Thomas A (2011) Regulated reprogramming in the regeneration of sensory receptor cells. Neuron 71:389-405