Understanding the pathogenesis of glaucoma, the second leading cause of blindness, is an important goal of vision research. Many studies have identified oxidative damage to the trabecular meshwork (TM) cells, leading to decreased outflow facility and increased intraocular pressure. Although the evidence linking oxidative damage to glaucoma is strong, the causes of oxidative damage in glaucoma are not known. In the proposed studies, we will test the hypothesis that oxidative damage to the TM is caused by excessive exposure to molecular oxygen and/or its metabolites. Our hypothesis is based on measurements of oxygen partial pressure (pO2), made in the human eye during surgery using a thin, flexible, fiberoptic probe. We identified large, stable oxygen gradients in the anterior chamber and tight regulation of pO2 in the anterior chamber angle, close to the TM. We also noted strong correlations between pO2 and important risk factors for glaucoma, including central corneal thickness, African-American heritage, and history of vitrectomy surgery. We believe that our studies are the first to link a physiologic variable, pO2 in the anterior chamber (AC), to these risks of glaucoma development. Our first specific aim will test whether the increased risk of glaucoma after vitrectomy is due to increased pO2 in the AC, causing damage to the TM. We will collaborate with colleagues at the University of Wisconsin-Madison for a longitudinal study in older Rhesus macaques that will sequentially undergo vitrectomy surgery and cataract extraction. We will map pO2 levels and measure aqueous humor antioxidants and outflow facility at each stage. At the conclusion of the study, we will determine the extent of TM cell loss and quantify the structural and oxidative damage to TM cells and their extracellular matrix. In this manner, we may correlate pO2 with oxidative damage to the TM.
Our second aim i s to determine whether the increased pO2 in African- Americans correlates with biochemical changes in the aqueous humor. We will expand our pilot study of metabolites in the aqueous humor, which suggested racial differences in mitochondrial metabolism. We will also analyze aqueous humor for its total antioxidant potential and concentration of known antioxidants, like ascorbate;studies that will determine whether there is a correlation between pO2 and the oxidant-antioxidant balance in the anterior chamber. We hypothesize that higher pO2 will be associated with depletion of anti- oxidants. Our third specific aim is to determine whether a non-invasive measure of corneal oxygen metabolism predicts intraocular pO2. We hypothesize that lower corneal oxygen consumption will correlate with increased pO2 in the AC. If correct, this test may provide an important means to determine those at risk of developing glaucoma. It will also offer a method to determine whether differences in intraocular oxygen are inherited and to identify the genes involved. Our novel approach will provide important information about the pathophysiology of open angle glaucoma by identifying factors responsible for the loss of aqueous outflow facility. The knowledge gained in these studies may lead to new therapies for and strategies to prevent this disease.

Public Health Relevance

Numerous studies provide support for the theory that oxidative stress, the imbalance between damaging free radical molecules and the body's antioxidant defense mechanisms, plays a role in glaucoma by damaging the trabecular meshwork cells in the drain of the eye and also by potentially damaging the cells of the optic nerve. We hypothesize that the source of this damage is caused by excessive exposure of the trabecular meshwork cells to oxygen and/or its metabolites. We will evaluate the effects of elevated levels of oxygen, which we have correlated to several previously identified glaucoma risk factors, on the function and cellular changes of the trabecular meshwork in an animal model. We will also study the fluids of the eye for biochemical changes associated with oxidative stress and measure the cornea's use of oxygen and avoid invasive measurements with a contact lens. Relevance: Glaucoma, the second leading cause of blindness worldwide and frequent cause of visual impairment in the U.S., is an important public health issue. By extending our understanding of the causes of this condition, this research proposal will also expand potential pathways of therapy and prevention.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Chin, Hemin R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Ban, Norimitsu; Siegfried, Carla J; Lin, Jonathan B et al. (2017) GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients. JCI Insight 2:
Kubota, M; Shui, Y B; Liu, M et al. (2016) Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radic Biol Med 97:513-519
Ma, Nan; Siegfried, Carla; Kubota, Miyuki et al. (2016) Expression Profiling of Ascorbic Acid-Related Transporters in Human and Mouse Eyes. Invest Ophthalmol Vis Sci 57:3440-50
Beeman, Scott C; Shui, Ying-Bo; Perez-Torres, Carlos J et al. (2016) O2 -sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magn Reson Med 75:2442-7
Siegfried, Carla J; Shui, Ying-Bo; Bai, Fang et al. (2015) Reply: To PMID 25461296. Am J Ophthalmol 159:610-1
Huang, Andrew J W; Shui, Ying-Bo; Han, Yu-Ping et al. (2015) Impact of Corneal Endothelial Dysfunctions on Intraocular Oxygen Levels in Human Eyes. Invest Ophthalmol Vis Sci 56:6483-8
Bei, Ling; Shui, Ying-Bo; Bai, Fang et al. (2015) A test of lens opacity as an indicator of preclinical Alzheimer Disease. Exp Eye Res 140:117-123
Siegfried, Carla J; Shui, Ying-Bo; Bai, Fang et al. (2015) Central corneal thickness correlates with oxygen levels in the human anterior chamber angle. Am J Ophthalmol 159:457-62.e1
Filas, Benjamen A; Zhang, Qianru; Okamoto, Ruth J et al. (2014) Enzymatic degradation identifies components responsible for the structural properties of the vitreous body. Invest Ophthalmol Vis Sci 55:55-63
Beebe, David C; Shui, Ying-Bo; Siegfried, Carla J et al. (2014) Preserve the (intraocular) environment: the importance of maintaining normal oxygen gradients in the eye. Jpn J Ophthalmol 58:225-31

Showing the most recent 10 out of 15 publications