IRBP has long been assumed to function in the visual cycle because of its retinoid binding properties and its localization to the interphotoreceptor space. However, IRBP mRNA and protein expression precede opsin expression and the last mitosis of photoreceptor precursor cells, that is, well before IRBP would function in the visual cycle. From this anomaly we hypothesize that early IRBP gene expression is important in development. In testing this hypothesis, we unexpectedly find that IRBP knockout (KO) mice develop high myopia, with aberrant eye growth starting after P7 and before P10, well before eyes open. This implies a role for IRBP in controlling eye growth even without vision-based signaling. Additionally, we find that IRBP KO mice lack correct developmental pruning and movement of retinal inner nuclear layer (INL) cells, including inner rods, suggesting that IRBP plays a role in retinal cell fate. Finally, we find that IRBP deficiency results in rod photoreceptr degeneration. We propose to test whether the development of myopia results in this degeneration, or whether the degeneration separately results from IRBP deficiency. A simple and organized set of focused experiments that test the hypotheses with sensible workload are proposed in two aims. These are:
Aim 1. To test the predictions that myopia can be attributed uniquely to the absence of the IRBP protein in the interphotoreceptor space (IPS) of the KO mouse in a critical time window of P7-P10, and whether myopia can be prevented by restoring IRBP to its correct location in the IPS in the same critical time window.
Aim 2. To test whether the myopia observed in the absence of IRBP is required for the subsequent retinal degeneration (RD) or whether the absence of IRBP, separate from myopia etiology, is responsible for the RD.

Public Health Relevance

Myopia affects 25% to 70% of the world's population. It has reached epidemic proportions. We need more effective treatments for myopia, especially profound myopia. Significance: The surprising finding of highly myopic IRBP knockout (KO) mice suggests an entirely different function from what was thought about IRBP. How IRBP may control emmetropia and non-vision mediated development of eye size and shape is vitally important and timely. A mechanistic study of etiology of myopia in the IRBP KO mouse contributes to this need. Impact: We will learn basic biology of when IRBP is required for normal eye growth. Cause and effect are discovered: Does IRBP directly cause myopia and independently cause RD? Or does this myopia directly result in RD? The project may identify IRBP as a target or sink for drug treatments to prevent myopia.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY021592-02
Application #
8662781
Study Section
Special Emphasis Panel (BVS)
Program Officer
Wiggs, Cheri
Project Start
2013-06-01
Project End
2017-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
$382,200
Indirect Cost
$137,200
Name
Emory University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Schmidt, Robin H; Nickerson, John M; Boatright, Jeffrey H (2016) Exercise as Gene Therapy: BDNF and DNA Damage Repair. Asia Pac J Ophthalmol (Phila) 5:309-11
Chrenek, Micah A; Nickerson, John M; Boatright, Jeffrey H (2016) Clustered Regularly Interspaced Short Palindromic Repeats: Challenges in Treating Retinal Disease. Asia Pac J Ophthalmol (Phila) 5:304-8
Rashid, Alia; Bhatia, Shagun K; Mazzitello, Karina I et al. (2016) RPE Cell and Sheet Properties in Normal and Diseased Eyes. Adv Exp Med Biol 854:757-63
Bhatia, Shagun K; Rashid, Alia; Chrenek, Micah A et al. (2016) Analysis of RPE morphometry in human eyes. Mol Vis 22:898-916
Markand, Shanu; Baskin, Natecia L; Chakraborty, Ranjay et al. (2016) IRBP deficiency permits precocious ocular development and myopia. Mol Vis 22:1291-1308
Pardue, Machelle T; Chrenek, Micah A; Schmidt, Robin H et al. (2015) Potential Role of Exercise in Retinal Health. Prog Mol Biol Transl Sci 134:491-502
Boatright, Jeffrey H; Dalal, Nupur; Chrenek, Micah A et al. (2015) Methodologies for analysis of patterning in the mouse RPE sheet. Mol Vis 21:40-60
Grossniklaus, Hans E; Geisert, Eldon E; Nickerson, John M (2015) Introduction to the Retina. Prog Mol Biol Transl Sci 134:383-96
Wu, Ji-hong; Zhang, Sheng-hai; Nickerson, John M et al. (2015) Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma. Neurobiol Dis 74:167-79
Wright, Charles B; Chrenek, Micah A; Feng, Wei et al. (2014) The Rpe65 rd12 allele exerts a semidominant negative effect on vision in mice. Invest Ophthalmol Vis Sci 55:2500-15

Showing the most recent 10 out of 16 publications