We intend to prepare the first tungsten and molybdenum complexes of molecular nitrogen and partially reduced molecular nitrogen (hydrazido (1-), hydrazido (2-)) in which the metal is in its highest possible oxidation state. The object is to determine how high oxidation state species can be induced to give up their nitrogen ligand(s) in the form of hydrazine or ammonia, and in particular, to determine at what point the N-N bond scission occurs. These studies are aimed toward helping to answer the question as to how nitrogenase reduces molecular nitrogen.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM031978-03
Application #
3280446
Study Section
Metallobiochemistry Study Section (BMT)
Project Start
1983-04-01
Project End
1986-03-31
Budget Start
1985-04-01
Budget End
1986-03-31
Support Year
3
Fiscal Year
1985
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
Sharma, Ajay; Roemelt, Michael; Reithofer, Michael et al. (2017) EPR/ENDOR and Theoretical Study of the Jahn-Teller-Active [HIPTN3N]MoVL Complexes (L = N-, NH). Inorg Chem 56:6906-6919
Kinney, R Adam; McNaughton, Rebecca L; Chin, Jia Min et al. (2011) Protonation of the dinitrogen-reduction catalyst [HIPTN3N]Mo(III) investigated by ENDOR spectroscopy. Inorg Chem 50:418-20
Kinney, R Adam; Hetterscheid, Dennis G H; Hanna, Brian S et al. (2010) Formation of {[HIPTN(3)N]Mo(III)H}(-) by heterolytic cleavage of H(2) as established by EPR and ENDOR spectroscopy. Inorg Chem 49:704-13
McNaughton, Rebecca L; Roemelt, Michael; Chin, Jia Min et al. (2010) Experimental and theoretical EPR study of Jahn-Teller-active [HIPTN(3)N]MoL complexes (L = N(2), CO, NH(3)). J Am Chem Soc 132:8645-56
Chin, J M; Schrock, R R; Müller, P (2010) Synthesis of diamidopyrrolyl molybdenum complexes relevant to reduction of dinitrogen to ammonia. Inorg Chem 49:7904-16
Reithofer, Michael R; Schrock, Richard R; Müller, Peter (2010) Synthesis of [(DPPNCH2CH2)3N]3- molybdenum complexes (DPP = 3,5-(2,5-Diisopropylpyrrolyl)2C6H3) and studies relevant to catalytic reduction of dinitrogen. J Am Chem Soc 132:8349-58
Hetterscheid, Dennis G H; Hanna, Brian S; Schrock, Richard R (2009) Molybdenum triamidoamine systems. Reactions involving dihydrogen relevant to catalytic reduction of dinitrogen. Inorg Chem 48:8569-77
Kupfer, Thomas; Schrock, Richard R (2009) Alkylation of dinitrogen in [(HIPTNCH(2)CH(2))(3)N]Mo complexes (HIPT = 3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)). J Am Chem Soc 131:12829-37
Schrock, Richard R (2008) Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Angew Chem Int Ed Engl 47:5512-22
McNaughton, Rebecca L; Chin, Jia Min; Weare, Walter W et al. (2007) EPR study of the low-spin [d(3);S =(1)/(2)], Jahn-Teller-active, dinitrogen complex of a molybdenum trisamidoamine. J Am Chem Soc 129:3480-1

Showing the most recent 10 out of 23 publications