Messenger RNA turnover has long been recognized to play a key role in controlling gene expression in all organisms. The long-term goal of this research project is to understand the basic principles that govern mRNA degradation in bacterial cells. The immediate objectives are to elucidate the specificity and mechanism of 5'-end-dependent RNA degradation in Escherichia coli and Bacillus subtilis by investigating the proteins that are central to this regulatory pathway and the transcripts that they target. Achieving these objectives will require not only the use of standard molecular biological, biochemical, and genetic methods but also the development of new low- and high-throughput techniques for analyzing the 5' phosphorylation state of individual transcripts and for using genetic screening to identify pertinent clones and mutants. The knowledge gained from these studies will provide important insights into a fundamental aspect of gene regulation that can play a key role in bacterial pathogenesis.

Public Health Relevance

The proposed research will address the mechanisms by which messenger RNA is degraded in bacterial cells. The knowledge thereby acquired is expected to be of value in understanding the regulatory processes that govern bacterial pathogenesis and in maximizing bacterial production of medically useful proteins. In addition, the methods and concepts developed in the course of these studies are likely to be useful for elucidating how messenger RNA degradation helps to ensure proper levels of gene expression in healthy human cells.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Bender, Michael T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
Schools of Medicine
New York
United States
Zip Code
Richards, Jamie; Belasco, Joel G (2016) Distinct Requirements for 5'-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G. J Biol Chem 291:5038-48
Foley, Patricia L; Hsieh, Ping-kun; Luciano, Daniel J et al. (2015) Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J Biol Chem 290:9478-86
Belasco, Joel G (2015) Way to go, RNA. RNA 21:565-6
Luciano, Daniel J; Belasco, Joel G (2015) NAD in RNA: unconventional headgear. Trends Biochem Sci 40:245-7
Schmidt, Skye A; Foley, Patricia L; Jeong, Dong-Hoon et al. (2015) Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res 43:309-23
Hui, Monica P; Foley, Patricia L; Belasco, Joel G (2014) Messenger RNA degradation in bacterial cells. Annu Rev Genet 48:537-59
Vogel, Jörg; Gottesman, Susan; Belasco, Joel et al. (2014) Meeting report: Regulating with RNA in Bacteria 2013. RNA Biol 11:403-12
Hsieh, Ping-kun; Richards, Jamie; Liu, Quansheng et al. (2013) Specificity of RppH-dependent RNA degradation in Bacillus subtilis. Proc Natl Acad Sci U S A 110:8864-9
Luciano, Daniel J; Hui, Monica P; Deana, Atilio et al. (2012) Differential control of the rate of 5'-end-dependent mRNA degradation in Escherichia coli. J Bacteriol 194:6233-9
Richards, Jamie; Luciano, Daniel J; Belasco, Joel G (2012) Influence of translation on RppH-dependent mRNA degradation in Escherichia coli. Mol Microbiol 86:1063-72

Showing the most recent 10 out of 42 publications