Synthetic biology is seen as an emerging discipline for engineering cells more easily and predictably. Several advances have made this possible, such as the increasing numbers of sequenced genomes as raw materials, rapid synthesis of large DNAs, the ability to quantitate the inner workings of single cells, the potential to reprogra entire organisms with new genomes, and a vision that biological design has some analogy to logic circuits. However, myriad studies on cell organization add a degree of complexity and regulation that has not been appreciated in the overall design processes. The overarching goal of this proposal is to harness the multidimensionality of biology to optimize the production of novel pathways, complexes, and cells. A limitation of current synthetic biology is the tendency to engineer biological systems as if they function in a linear, digital computer-like manner. However, cells function in three spatial dimensions and over time, using multi-dimensionality in the form of protein/nucleic acid/membrane complexes and organelles. The proposed work focuses on assembling, in a predictable manner, protein complexes that move in more than one dimension and on different time scales. This work thus encompasses a new direction that will integrate synthetic biology with cell and structural biology, with direct health-relatedness throug its broader implications for development of protein and cell-based therapeutics.
The Specific Aims are to: 1) construct memory circuits that record different levels of cytokine signaling;2) determine the quantitative and spatial requirements for information transmission between the cell surface and the nucleus;and 3) simulate the behavior of proteins that signal from the cell surface to the nucleus. Type I Interferon/STAT signaling will be studied, because it has therapeutic significance, a high signal-noise ratio, and many questions remain about signaling mechanisms. Multi-element gene-based memory circuits that record for later inspection key events in the existence of a cell will be implemented. Prototype targeted cytokines for activity in cell-based assays will be developed;these will be designed to represent synthetic biological constructs and engineered protein therapeutics, as well as natural flexible proteins that use multiple weak interactions to accomplish complex assembly tasks. Finally, a simulation system that will model the spatiotemporal behavior of flexible multi-domain proteins typical of synthetic-biological constructs or candidate therapeutics will be implemented.

Public Health Relevance

The engineering of biology holds enormous promise for improved health and sustainability and as such forms the basis of much of the new economy of this century. The overarching goal of this research is to extend the predictability of engineering biology to include the increased complexity found in Nature. The work will focus directly on elements relevant to rapid development of targeted proteins and programmed cells as therapeutics.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Modeling and Analysis of Biological Systems Study Section (MABS)
Program Officer
Lyster, Peter
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Medicine
United States
Zip Code
Robinson-Mosher, Avi; Chen, Jan-Hung; Way, Jeffrey et al. (2014) Designing cell-targeted therapeutic proteins reveals the interplay between domain connectivity and cell binding. Biophys J 107:2456-66
Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek et al. (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95-107
Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A et al. (2013) Dynamics simulations for engineering macromolecular interactions. Chaos 23:025110
Wang, Qingqing; Moore, Michael J; Adelmant, Guillaume et al. (2013) PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth. Genes Dev 27:615-26
Inniss, Mara C; Silver, Pamela A (2013) Building synthetic memory. Curr Biol 23:R812-6
Haynes, Karmella A; Ceroni, Francesca; Flicker, Daniel et al. (2012) A sensitive switch for visualizing natural gene silencing in single cells. ACS Synth Biol 1:99-106
Shih, Joseph D; Waks, Zeev; Kedersha, Nancy et al. (2011) Visualization of single mRNAs reveals temporal association of proteins with microRNA-regulated mRNA. Nucleic Acids Res 39:7740-9
Haynes, Karmella A; Silver, Pamela A (2011) Synthetic reversal of epigenetic silencing. J Biol Chem 286:27176-82
Park, Sunghyouk; Isaacson, Rivka; Kim, Hyoung Tae et al. (2005) Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 13:995-1005
Robinson, Michael A; Park, Sunghyouk; Sun, Zhen-Yu J et al. (2005) Multiple conformations in the ligand-binding site of the yeast nuclear pore-targeting domain of Nup116p. J Biol Chem 280:35723-32

Showing the most recent 10 out of 26 publications