The overall goal of this research is to develop a molecular mechanistic understanding of the assembly, sorting and transport of the vacuolar-type proton-translocating ATPase (V-ATPase) in the simple model eukaryote, the yeast Saccharomyces cerevisiae. Yeast has proved to be an excellent model system, both for identifying the proteins regulating membrane traffic in eukaryotic cells and for investigating the molecular mechanisms by which these proteins function. Genetic analysis in yeast has identified a group of genes encoding proteins that function in the in the endoplasmic reticulum (ER) in assembly of the membrane sector of the V-ATPase. These V-ATPase assembly factors will be characterized by genetic and biochemical approaches, to investigate the interactions of the assembly factors with the V-ATPase membrane sector subunits in the ER. We have also identified possible ER-localized cargo receptors for loading the V-ATPase into COPII vesicles budding from the ER. The cargo receptors will be investigated for direct interactions with the V- ATPase subunits and assembly factors, and for their precise role in the process. Understanding the assembly of a complex, multisubunit integral membrane protein and its loading into vesicles exiting the ER is a fundamental issue in cell biology. There are two different forms of the yeast V-ATPase;the Golgi and endosomal form of the complex assembles with the Stv1p isoform of the 100 kDa subunit, and the complex on the vacuole membrane assembles with the Vph1p isoform of the 100 kDa subunit. We have identified mutations in the Stv1p N-terminal domain that lead to mislocalization of the Stv1-associated V-ATPase to the vacuole. We will characterize these mutations to determine whether they affect retention in the Golgi complex or retrieval of Stv1p back from the endosome. We have also identified a large group of genes involved in the sorting and retention of the Stv1- associated V-ATPase in the Golgi/endosome network, and we will characterize their encoded proteins to assess whether they bind to the Stv1p sorting/retention signals or generally affect the retention/retrieval of a larger group of Golgi membrane proteins. Studies of membrane traffic in yeast have proven tremendously useful to a broader understanding of membrane transport and organelle biogenesis in all eukaryotic cells because of the remarkable similarity in mechanisms and proteins that regulate these processes from yeast to humans. These basic studies in membrane trafficking and organelle acidification in yeast are providing important insights into our understanding of many diseases i humans related to defects in organelle acidification and protein mislocalization.

Public Health Relevance

The overall goal of this research is to understand the role of the vacuolar-type ATPase (V-ATPase) in the acidification of cellular organelles in the simple model eukaryote, the yeast Saccharomyces cerevisiae. We will investigate how the V-ATPase, which is composed of 14 different protein "subunits", is assembled in one compartment of the yeast cell and then transported with great fidelity to different cellular compartments. Studies of membrane traffic in yeast have proven tremendously useful to a broader understanding of organelle acidification in all eukaryotic cells because of the remarkable similarity in mechanisms and proteins that regulate these processes from yeast to humans. These basic studies in yeast are providing important insights into our understanding of many diseases in humans related to defects in organelle acidification. Understanding V-ATPase function will provide important insights into diseases of the kidney (renal tubular acidosis), bone diseases (osteopetrosis), and in tumor metastasis, and new drug targets should arise from our studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM038006-25
Application #
8245071
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Ainsztein, Alexandra M
Project Start
1987-04-01
Project End
2013-09-30
Budget Start
2012-04-01
Budget End
2013-09-30
Support Year
25
Fiscal Year
2012
Total Cost
$287,634
Indirect Cost
$78,439
Name
University of Oregon
Department
Biochemistry
Type
Organized Research Units
DUNS #
948117312
City
Eugene
State
OR
Country
United States
Zip Code
97403
Finnigan, Gregory C; Hanson-Smith, Victor; Stevens, Tom H et al. (2012) Evolution of increased complexity in a molecular machine. Nature 481:360-4
Finnigan, Gregory C; Cronan, Glen E; Park, Hae J et al. (2012) Sorting of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase): identification of a necessary and sufficient Golgi/endosomal retention signal in Stv1p. J Biol Chem 287:19487-500
Finnigan, Gregory C; Ryan, Margret; Stevens, Tom H (2011) A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187:771-83
Finnigan, Gregory C; Hanson-Smith, Victor; Houser, Benjamin D et al. (2011) The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in Saccharomyces cerevisiae. Mol Biol Cell 22:3176-91
Flannery, Andrew R; Stevens, Tom H (2008) Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase. J Biol Chem 283:29099-108
Neubert, Christoph; Graham, Laurie A; Black-Maier, Eric W et al. (2008) Arabidopsis has two functional orthologs of the yeast V-ATPase assembly factor Vma21p. Traffic 9:1618-28
Ryan, Margret; Graham, Laurie A; Stevens, Tom H (2008) Voa1p functions in V-ATPase assembly in the yeast endoplasmic reticulum. Mol Biol Cell 19:5131-42
Compton, Mark A; Graham, Laurie A; Stevens, Tom H (2006) Vma9p (subunit e) is an integral membrane V0 subunit of the yeast V-ATPase. J Biol Chem 281:15312-9
Davis-Kaplan, Sandra R; Compton, Mark A; Flannery, Andrew R et al. (2006) PKR1 encodes an assembly factor for the yeast V-type ATPase. J Biol Chem 281:32025-35
Bowers, Katherine; Stevens, Tom H (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744:438-54

Showing the most recent 10 out of 43 publications