Cu,Zn superoxide dismutase (SOD) mutations can cause Familial Amyotrophic Lateral Sclerosis (FALS), an inherited variety of ALS (or Lou Gehrig's disease), the most common human motor neuron disease. We, and others have discovered that FALS SOD mutants have defects in fold and assembly, and form fibrous aggregates. Together our SOD results including comparative analyses of human Cu,ZnSOD, MnSOD and microbial SODs, plus other published data including binding of FALS mutant SOD to stress response proteins Rac1 and Derlin-1, suggest that local structural defects from FALS mutations promote toxicity via aggregation and aberrant protein binding. Characterization of the thermostable eukaryotic SOD from Alvinella pompejana reveals that extra interactions that reduce local unraveling of loops and termini improve SOD biochemical and biological stability. This proposal has three goals: 1) to develop a unified understanding for the SOD mutations that can cause FALS, 2) to test protein partner roles in aberrant SOD structural biochemistry, and 3) to identify and characterize ligands that stabilize FALS mutant SODs to reduce their toxicity. The Tainer and Shin labs will produce FALS SOD mutant proteins and analyze them by small angle X-ray scattering (SAXS) and fluorescent screening to test possible unified molecular mechanisms for pathophysiology. The Getzoff and Shin labs will solve and analyze crystal structures informed by NMR results, examine protein interactions and conformations with deuterium exchange mass spectrometry, and employ computer-based ligand binding analyses. Together, the coordinated Tainer-Getzoff-Shin efforts aim to resolve paradoxes concerning the molecular mechanism by which >100 SOD mutations lead to the same FALS pathology, and to discover and optimize ligands as chemical tools that reduce FALS SOD mutant aggregation and toxicity.

Public Health Relevance

Many different mutations in the human protein Cu,Zn superoxide dismutase (SOD) can cause the late-onset neurodegenerative disease amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease. Most ALS victims die within a few years, and there is no effective treatment. Our research has two overall goals: 1) to understand how SOD mutations result in aberrant protein interactions and assemblies that underlie ALS pathophysiology, and 2) to discover chemical ligands that stabilize the normal SOD fold and assembly as candidate compounds that may slow or prevent disease progression.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM039345-16
Application #
8309285
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Flicker, Paula F
Project Start
1988-09-20
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
16
Fiscal Year
2012
Total Cost
$357,202
Indirect Cost
$169,102
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Merz, Gregory E; Borbat, Peter P; Pratt, Ashley J et al. (2014) Copper-based pulsed dipolar ESR spectroscopy as a probe of protein conformation linked to disease states. Biophys J 107:1669-74
Seeger, Franziska; Quintyn, Royston; Tanimoto, Akiko et al. (2014) Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity. Biochemistry 53:2153-65
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Perry, J Jefferson P; Tainer, John A (2013) Developing advanced X-ray scattering methods combined with crystallography and computation. Methods 59:363-71
Perry, J J P; Shin, D S; Getzoff, E D et al. (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804:245-62
Shin, David S; Didonato, Michael; Barondeau, David P et al. (2009) Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J Mol Biol 385:1534-55
Roberts, Blaine R; Tainer, John A; Getzoff, Elizabeth D et al. (2007) Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. J Mol Biol 373:877-90
DiDonato, Michael; Craig, Lisa; Huff, Mary E et al. (2003) ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J Mol Biol 332:601-15
Cardoso, Rosa M F; Daniels, Douglas S; Bruns, Christopher M et al. (2003) Characterization of the electrophile binding site and substrate binding mode of the 26-kDa glutathione S-transferase from Schistosoma japonicum. Proteins 51:137-46
Cardoso, Rosa M F; Thayer, Maria M; DiDonato, Michael et al. (2002) Insights into Lou Gehrig's disease from the structure and instability of the A4V mutant of human Cu,Zn superoxide dismutase. J Mol Biol 324:247-56

Showing the most recent 10 out of 34 publications