The overall aim of this research is further understanding of the cellular mechanisms involved in the initiation and control of exocrine secretion. The stimulation of exocrine secretory activity by various hormones and neurotransmitters is known to involve increases in intracellular calcium ion (Ca2+) concentrations, increases that generally result partly from an initial mobilization of intracellular Ca2+ pools and partly from an enhanced entry of Ca2+ across the plasma membrane. It has been established that such responses are also associated with the increased turnover of membrane phosphoinositides, but the relationship between the metabolism of these membrane phospholipids and changes in membrane calcium permeability are unknown. Current models emphasize the possible significance of the inositol (poly) phosphates, produced by phosphoinositide breakdown, in inducing the receptor-activated increase in plasma membrane calcium permeability. In particular, an essential """"""""permissive"""""""" role has been proposed for inositol (1,4,5) trisphosphate (I(1,4,5)P3), possibly in association with inositol (1,3,4,5) tetrakisphosphate (I(1,3,4,5)P4). This permissive role of I(1,4,5)P32+ is believed to be associated with its known ability to mobilize intracellular Ca2+ stores. However, preliminary studies on muscarinic receptor- activated increases in intracellular Ca2+ concentration in the avian nasal gland have failed to detect any mobilization of intracellular Ca2+ in this tissue. This suggests that current models may need to be modified, perhaps by considering other possible actions of I(1,4,5)P3 to account for its apparent permissive role, or by considering the possibility of I(1,3,4,5)P being directly capable of increasing activating Ca2+ influx in this tissue. This problem will be studied by investigating the relationships between inositol phosphate production and increases in intracellular Ca2+ concentration in isolated cells using anion- exchange chromatography and fluorimetric techniques. In addition, the direct effects of exogenous inositol phosphates on Ca2+ entry will be examined in single isolated cells by a technique combining whole-cell dialysis, using a patch-pipette, and simultaneous microfluorimetry of Ca2+ -dependent indo-1 fluorescence.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM040457-02
Application #
3298001
Study Section
Physiology Study Section (PHY)
Project Start
1988-07-01
Project End
1991-06-30
Budget Start
1989-07-01
Budget End
1990-06-30
Support Year
2
Fiscal Year
1989
Total Cost
Indirect Cost
Name
University of Rochester
Department
Type
School of Medicine & Dentistry
DUNS #
208469486
City
Rochester
State
NY
Country
United States
Zip Code
14627
Thompson, Jill L; Zhao, Yue; Stathopulos, Peter B et al. (2018) Phosphorylation-mediated structural changes within the SOAR domain of stromal interaction molecule 1 enable specific activation of distinct Orai channels. J Biol Chem 293:3145-3155
Shuttleworth, Trevor J (2017) Selective activation of distinct Orai channels by STIM1. Cell Calcium 63:40-42
Thompson, Jill L; Shuttleworth, Trevor J (2015) Anchoring protein AKAP79-mediated PKA phosphorylation of STIM1 determines selective activation of the ARC channel, a store-independent Orai channel. J Physiol 593:559-72
Duquette, Mark; Nadler, Monica; Okuhara, Dayne et al. (2014) Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity. Matrix Biol 37:15-24
Thompson, Jill L; Shuttleworth, Trevor J (2013) How many Orai's does it take to make a CRAC channel? Sci Rep 3:1961
Thompson, Jill L; Shuttleworth, Trevor J (2013) Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1. J Physiol 591:3507-23
Thompson, Jill L; Shuttleworth, Trevor J (2013) Exploring the unique features of the ARC channel, a store-independent Orai channel. Channels (Austin) 7:364-73
Shuttleworth, Trevor J (2012) Orai3--the 'exceptional' Orai? J Physiol 590:241-57
Shuttleworth, Trevor J (2012) Orai channels - new insights, new ideas. J Physiol 590:4155-6
Shuttleworth, Trevor J (2012) STIM and Orai proteins and the non-capacitative ARC channels. Front Biosci (Landmark Ed) 17:847-60

Showing the most recent 10 out of 20 publications