The transmission of genetic material in each cell division requires its accurate duplication and distribution to the daughter cells. Errors in this process lead to aneuploidy, which is implicated in oncogenesis, birth defects and cell death. The chromosomes are segregated into two equivalent parts by a microtubule- based molecular machine, the mitotic spindle. The spindle is bipolar with each pole carrying an exact complement of chromosomes to each daughter cell. Chromosomes attach to microtubules via multiprotein organelles called kinetochores. The kinetochore is at the center of both an error correction mechanism and the spindle checkpoint, which delays the cell cycle as long as unattached kinetochores remain. Kinetochores attach to microtubules with a striking combination of strength and plasticity. The attachments are mobile and robust under tension, but can also rapidly destabilize in response to regulatory signals. The binding strength of a native kinetochore is greater than that provided by the sum of its components. We will use reconstitution to test hypotheses for how the attachment strength is enhanced. Kinetochores transmit force from the end of the microtubule to the centromere. A model for the connectivity of the complexes within an assembled kinetochore has been proposed based on data gathered from multiple organisms. We propose to test this model and map the chain of connections that transmit force. Finally, we will test hypotheses for how incorrect attachments are detected and corrected.

Public Health Relevance

The transmission of genetic material in each cell division requires its accurate duplication and distribution to the daughter cells. Errors in this process led to aneuploidy, which is implicated in oncogenesis, disability and cell death.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM040506-27S1
Application #
9267765
Study Section
Program Officer
Deatherage, James F
Project Start
1988-07-01
Project End
2019-01-31
Budget Start
2016-02-01
Budget End
2017-01-31
Support Year
27
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Helgeson, Luke A; Zelter, Alex; Riffle, Michael et al. (2018) Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments. Proc Natl Acad Sci U S A 115:2740-2745
Kim, Jae Ook; Zelter, Alex; Umbreit, Neil T et al. (2017) The Ndc80 complex bridges two Dam1 complex rings. Elife 6:
Kudalkar, Emily M; Deng, Yi; Davis, Trisha N et al. (2016) Coverslip Cleaning and Functionalization for Total Internal Reflection Fluorescence Microscopy. Cold Spring Harb Protoc 2016:pdb.prot085548
Kudalkar, Emily M; Davis, Trisha N; Asbury, Charles L (2016) Single-Molecule Total Internal Reflection Fluorescence Microscopy. Cold Spring Harb Protoc 2016:pdb.top077800
Hsia, Yang; Bale, Jacob B; Gonen, Shane et al. (2016) Design of a hyperstable 60-subunit protein dodecahedron. [corrected]. Nature 535:136-9
Kudalkar, Emily M; Davis, Trisha N; Asbury, Charles L (2016) Preparation of Reactions for Imaging with Total Internal Reflection Fluorescence Microscopy. Cold Spring Harb Protoc 2016:pdb.prot085563
Kollman, Justin M; Greenberg, Charles H; Li, Sam et al. (2015) Ring closure activates yeast ?TuRC for species-specific microtubule nucleation. Nat Struct Mol Biol 22:132-7
Kudalkar, Emily M; Scarborough, Emily A; Umbreit, Neil T et al. (2015) Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex. Proc Natl Acad Sci U S A 112:E5583-9
Zelter, Alex; Bonomi, Massimiliano; Kim, Jae ook et al. (2015) The molecular architecture of the Dam1 kinetochore complex is defined by cross-linking based structural modelling. Nat Commun 6:8673
Tien, Jerry F; Umbreit, Neil T; Zelter, Alex et al. (2014) Kinetochore biorientation in Saccharomyces cerevisiae requires a tightly folded conformation of the Ndc80 complex. Genetics 198:1483-93

Showing the most recent 10 out of 58 publications