Proper cellular growth and differentiation is determined by the regulated expression of the. genetic material within the cell. The control of gene expression has been studied intensively and has been demonstrated to be controlled at multiple points from transcriptional initiation to protein stability. Recently, it has become clear that the decay rates of mRNAs vary by as much as fifty-fold, are regulated and play an important role in controlling gene expression. It has been my goal to define both the cis- and trans-acting factors which regulate mRNA stability. Work from many laboratories has demonstrated the requirement for translation in the degradation of mRNAs. Understanding the role of translation in mRNA decay is a major challenge for this field. One clear example of this relationship is the observation that nonsense mutations accelerate the decay rates of mRNAs 10- to 20-fold. Our studies on the nonsense-mediated mRNA decay pathway have demonstrated that: 1) the transcript of yeast PGK1 gene is rapidly degraded by premature nonsense codons in a position-dependent manner, 2) such decay requires specific sequences downstream of the nonsense mutation (preliminary evidence suggests that translational re-initiation is important), 3) there may be a sequence element in the PGK1 transcript that, when translated, renders the PGK1 transcript resistant to the nonsense-mediated mRNA decay pathway and 4) there is at least one trans-acting factor involved in the pathway (pUPF1). The objectives of this proposal are to: A) identify the boundaries of the cis-acting sequences, including both the downstream and resistance elements, and determine their functional regions by mutagenesis; B) identify genes and mutations that i) suppress the effects of the upfl mutation and ii) are involved in inactivating the nonsense-mediated mRNA decay pathway when the resistance element is translated; and C) develop an in vitro mRNA decay system that reflects the nonsense-mediated mRNA decay pathway observed in vivo. Once an in vitro mRNA decay system is established, we will utilize this system to identify the rate limiting RNA cleavage site, investigate the biochemical mechanisms of the nonsense-mediated mRNA decay pathway and identify the role of the proteins that we will be identifying by the genetic screens described above.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM048631-05
Application #
2022668
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1993-01-01
Project End
1997-12-31
Budget Start
1997-01-01
Budget End
1997-12-31
Support Year
5
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Medicine & Dentistry of NJ
Department
Genetics
Type
Schools of Medicine
DUNS #
622146454
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Wang, Weirong; Cajigas, Ivan J; Peltz, Stuart W et al. (2006) Role for Upf2p phosphorylation in Saccharomyces cerevisiae nonsense-mediated mRNA decay. Mol Cell Biol 26:3390-400
Le Roy, Florence; Salehzada, Tamim; Bisbal, Catherine et al. (2005) A newly discovered function for RNase L in regulating translation termination. Nat Struct Mol Biol 12:505-12
Gonzalez, C I; Bhattacharya, A; Wang, W et al. (2001) Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274:15-25
Wang, W; Czaplinski, K; Rao, Y et al. (2001) The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 20:880-90
Gonzalez, C I; Wang, W; Peltz, S W (2001) Nonsense-mediated mRNA decay in Saccharomyces cerevisiae: a quality control mechanism that degrades transcripts harboring premature termination codons. Cold Spring Harb Symp Quant Biol 66:321-8
Wilusz, C J; Wang, W; Peltz, S W (2001) Curbing the nonsense: the activation and regulation of mRNA surveillance. Genes Dev 15:2781-5
Gonzalez, C I; Ruiz-Echevarria, M J; Vasudevan, S et al. (2000) The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay. Mol Cell 5:489-99
Ruiz-Echevarria, M J; Peltz, S W (2000) The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101:741-51
Bhattacharya, A; Czaplinski, K; Trifillis, P et al. (2000) Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6:1226-35
Czaplinski, K; Majlesi, N; Banerjee, T et al. (2000) Mtt1 is a Upf1-like helicase that interacts with the translation termination factors and whose overexpression can modulate termination efficiency. RNA 6:730-43

Showing the most recent 10 out of 30 publications