SR proteins are one of the important classes of RNA binding splicing factors involved in both constitutive and regulated splicing in mammalian cells. Our lab has been pursuing the mechanism and regulation of SR proteins. In the current award period, we have made significant conceptual advances in this research front by demonstrating a critical role of SR proteins in cell growth control and protection of genome stability, elucidating the mechanism for SR protein-mediated exon inclusion and skipping, and revealing collaboration between SR proteins and other types of splicing regulators in establishing cell type- and tissue-specific splicing programs. One of the most surprising discoveries is on an active role of SR proteins (particularly SC35) in transcriptional elongation. Our lab has also been making a systematic effort in generating conditional knockout mice to study splicing programs in development, which is essential to understand the regulation of alternative splicing under physiological settings. Based on these critical advances, we propose to continue this fruitful investigation by focusing on the following three specific aims: (1) We will determine rules that govern SR protein-dependent splice site selection in vivo. This line of investigation is important because we recently found that SR proteins are equally involved in regulated exon inclusion and skipping events in vivo, which is contrary to the common assumption that SR proteins promote exon inclusion. We will use the latest genomics approaches to determine the SR-RNA interaction network to test the hypothesis that the functional outcome may depend on the overall SR occupancy on a regulated exon relative to flanking exons. (2) We propose to define the molecular basis for determining exon identity in the genome, which has been one of the major unsolved puzzles in the field. Based on our recent genome-wide analysis, we propose to test the hypothesis that functional interplays between nucleosome positioning, transcription-induced histone modifications, and SR-DNA and SR-RNA interactions may jointly define exon identity in mammalian genomes, which may also underlie the active contribution of SR proteins to transcriptional elongation. (3) We plan to use genetic approaches to determine the biological relevance of regulated splicing on animal models. We have constructed conditional knockout mice for a number of critical splicing factors and regulators. Our previous studies on SR proteins have established developing heart as a model to study regulated splicing. We recently observed a series of striking phenotype on our current knockout models, indicative of the functional importance of regulated splicing in the heart. We propose to take both genetics and genomics approaches to test the hypothesis that the splicing regulators under investigation control a splicing network critical for postnatal heart remodeling. The proposed research along this line has clear disease relevance.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Bender, Michael T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Other Basic Sciences
Schools of Medicine
La Jolla
United States
Zip Code
Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung et al. (2016) RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. J Clin Invest 126:195-206
Chen, Lizhen; Liu, Zhijie; Zhou, Bing et al. (2016) CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. Elife 5:
Xue, Yuanchao; Qian, Hao; Hu, Jing et al. (2016) Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci 19:807-15
Fu, Xiang-Dong (2015) Yes, SiR. RNA 21:619-21
Chen, Fei; Zhou, Yu; Qi, Yingchuan B et al. (2015) Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes Dev 29:2377-90
Wei, Chaoliang; Qiu, Jinsong; Zhou, Yu et al. (2015) Repression of the Central Splicing Regulator RBFox2 Is Functionally Linked to Pressure Overload-Induced Heart Failure. Cell Rep :
Marina, Ryan J; Fu, Xiang-Dong (2015) Diabetic Insult-Induced Redistribution of MicroRNA in Spatially Organized Mitochondria in Cardiac Muscle. Circ Cardiovasc Genet 8:747-8
Han, Yixing; Gao, Shouguo; Muegge, Kathrin et al. (2015) Advanced Applications of RNA Sequencing and Challenges. Bioinform Biol Insights 9:29-46
Cai, Zhiqiang; Cao, Ran; Zhang, Kai et al. (2015) Oncogenic miR-17/20a Forms a Positive Feed-forward Loop with the p53 Kinase DAPK3 to Promote Tumorigenesis. J Biol Chem 290:19967-75
Wu, Tongbin; Fu, Xiang-Dong (2015) Genomic functions of U2AF in constitutive and regulated splicing. RNA Biol 12:479-85

Showing the most recent 10 out of 50 publications