Folded proteins are composed mostly of 2-sheets, 1-helices, and reverse turn conformations. Protein folding cannot be understood without knowing the structural basis for the energetics of these conformations. The long- term goal of these studies is to provide such an understanding for 2-sheet conformations. While substantial progress toward this goal has been made over the lifetime of this project, important questions remain, including the influence of N-linked glycosylation on 2-sheet folding energetics. N-glycosylation is a co-translational modification made on about 1/3 of the eukaryotic proteome before folding commences. Though we recognize the importance of the vast biology of N-glycosylation, we focus in this proposal on the following central hypotheses: (1) that the effects of N-glycosylation on 2-sheet folding energetics stem largely from specific protein-glycan interactions, and that a stabilizing structural motif containing such favorable interactions, called an enhanced aromatic sequon, can be engineered into a substantial fraction of reverse turns in proteins;and (2) that the oligosaccharyltransferase enzyme complex and the protein folding and trafficking machinery of the endoplasmic reticulum prefer to glycosylate, fold and secrete proteins with enhanced aromatic sequons, which stabilize the native state.
In Specific Aim 1, we discern whether the tripartite native-state-stabilizing interaction between an aromatic side chain, GlcNAc1 of the glycan, and a Thr side chain can be applied in multiple reverse turn types. Moreover, we will alter the electronic properties of the aromatic ring, the amphiphilicity of the N-linked carbohydrate, and the hydrophobicity and hydrogen bonding potential of the Thr residue to understand the stabilizing aspects of this tripartite interaction in distinct turn types. The basis for the higher cellular N-glycosylation yields for proteins containing enhanced aromatic sequons is explored in Specific Aim 2, utilizing pulse-chase experiments to discern whether glycosylation and/or trafficking is faster and whether endoplasmic reticulum-associated degradation is slower for such proteins. We also introduce a high throughput green-fluorescence protein-lectin quenching assay as an approach to identify the sequences from a relatively large pool that afford the highest glycosylation yields in the context of reverse turns. This information is critical to render glycosylation in cell lines efficient and more homogeneous in order to make glycosylation more predictable for non-experts. The proposed work is significant because it provides engineering guidelines for adding glycans to proteins to stabilize them, to optimize their production, to extend their shelf lives, and, in the case of protein drugs, to lengthen serum half-lives, enhance protease resistance, and reduce aggregation propensity. The innovation in the proposed work is that the cell-based and in vitro assays to follow up on our observation of increased glycoprotein yield has the potential to transform our understanding of sequon usage to a more reliable guideline-based approach wherein sequon glycosylation efficiency can be predicted, enabling efficient glycoprotein production in cells and enabling non-experts to study glycoproteins.

Public Health Relevance

The proposed research is relevant to the public health mission because there has been a marked increase in the use of protein therapeutics over the last decade. The pharmacologic properties of many of these proteins are improved when they are N- glycosylated;however, deciding where to put the N-glycans without compromising stability or function has been largely a trial and error process with few engineering guidelines. Our discovery of the enhanced aromatic sequon, which will be significantly elaborated and improved by the proposed research plan, provides a blueprint for optimizing protein therapeutics to be more stable, less aggregation prone, and more efficiently glycosylated, folded and trafficked by the cellular machinery than their non- glycosylated analogs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Marino, Pamela
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Hebert, Daniel N; Lamriben, Lydia; Powers, Evan T et al. (2014) The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol 10:902-10
Chen, Wentao; Enck, Sebastian; Price, Joshua L et al. (2013) Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. J Am Chem Soc 135:9877-84
Price, Joshua L; Shental-Bechor, Dalit; Dhar, Apratim et al. (2012) Correction to Context-Dependent Effects of Asparagine Glycosylation on Pin WW Folding Kinetics and Thermodynamics. J Am Chem Soc 134:4450-4451
Price, Joshua L; Powers, David L; Powers, Evan T et al. (2011) Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proc Natl Acad Sci U S A 108:14127-32
Culyba, Elizabeth K; Price, Joshua L; Hanson, Sarah R et al. (2011) Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science 331:571-5
Price, Joshua L; Shental-Bechor, Dalit; Dhar, Apratim et al. (2010) Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics. J Am Chem Soc 132:15359-67
Bunagan, Michelle R; Gao, Jianmin; Kelly, Jeffery W et al. (2009) Probing the folding transition state structure of the villin headpiece subdomain via side chain and backbone mutagenesis. J Am Chem Soc 131:7470-6
Hanson, Sarah R; Culyba, Elizabeth K; Hsu, Tsui-Ling et al. (2009) The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci U S A 106:3131-6
Gao, Jianmin; Bosco, Daryl A; Powers, Evan T et al. (2009) Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nat Struct Mol Biol 16:684-90
Jager, Marcus; Dendle, Maria; Kelly, Jeffery W (2009) Sequence determinants of thermodynamic stability in a WW domain--an all-beta-sheet protein. Protein Sci 18:1806-13

Showing the most recent 10 out of 40 publications