Generation of cell polarity is a key biological process that defines multiple aspects of normal cell growth, and differentiation. The major goal of this proposal is to understand how microtubules and microtubule motors contribute to generation of cell polarity and organization of the cytoskeleton. During the previous funding period our group discovered that microtubules in the cell are actively transported in the cytoplasm, with one microtubule serving as a track and another as a cargo for a motor protein. This movement is powered by conventional kinesin (kinesin-1), a major microtubule motor that has previously only been implicated in movement of organelles along microtubules. Microtubule movement by kinesin is required for formation of processes by neurons and non-neuronal cells. Here we propose to study the role of microtubule movements by kinesin and other microtubule motors in generation of cell polarity and specifically in formation of processes by neuronal and non-neuronal cells. We will initially use Drosophila S2 cells for identification of molecular components involved in microtubule sliding and formation of processes because these cells are highly sensitive to protein knock-down by RNAi and because microtubule movement and process formation can easily be visualized, tracked, quantified and manipulated. Once the components are identified, we will use Drosophila neurons to study how these components contribute to formation of neurites in culture and neurogenesis in vivo. We will use tools of Drosophila genetics combined with imaging of live neurons and micromanipulation to address these questions. The three overlapping areas to be investigated in this project are: (i) How does motor-driven microtubule sliding organize polarized microtubule arrays? (ii) How is motor-driven microtubule sliding regulated in a cell? (iii) What is the role of microtubule sliding in axon regeneration after injury? We believe that proteins driving and regulating microtubule sliding in neurons could serve as excellent new therapeutic targets for pharmacological stimulation of neurite outgrowth required for successful treatment of neuronal injuries and neurodegenerative diseases.

Public Health Relevance

Generation polarized cell morphology is of utmost importance for neuronal and other cell types in the human body. Growth of axons and dendrites is defined by cytoskeletal components, microtubules and actin filaments and motor proteins that move along these cytoskeletal structures. These components are potential targets for new drugs that could be used to treat neurodegenerative diseases and injuries of the brain and spinal cord.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM052111-18
Application #
9144819
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Gindhart, Joseph G
Project Start
1999-07-01
Project End
2019-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
18
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Robert, Amélie; Tian, Peirun; Adam, Stephen A et al. (2018) Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport. FASEB J :fj201800604R
Oelz, Dietmar B; Del Castillo, Urko; Gelfand, Vladimir I et al. (2018) Microtubule Dynamics, Kinesin-1 Sliding, and Dynein Action Drive Growth of Cell Processes. Biophys J 115:1614-1624
Lu, Wen; Lakonishok, Margot; Serpinskaya, Anna S et al. (2018) Ooplasmic flow cooperates with transport and anchorage in Drosophila oocyte posterior determination. J Cell Biol 217:3497-3511
De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena et al. (2017) Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells. Biochim Biophys Acta Gen Subj 1861:3178-3189
Vallotton, Pascal; van Oijen, Antoine M; Whitchurch, Cynthia B et al. (2017) Diatrack particle tracking software: Review of applications and performance evaluation. Traffic 18:840-852
Barlan, Kari; Gelfand, Vladimir I (2017) Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles. Cold Spring Harb Perspect Biol 9:
Steinman, Jonathan B; Santarossa, Cristina C; Miller, Rand M et al. (2017) Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. Elife 6:
Lu, Wen; Gelfand, Vladimir I (2017) Moonlighting Motors: Kinesin, Dynein, and Cell Polarity. Trends Cell Biol 27:505-514
Lu, Wen; Winding, Michael; Lakonishok, Margot et al. (2016) Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes. Proc Natl Acad Sci U S A 113:E4995-5004
Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R et al. (2016) Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts. Mol Biol Cell 27:608-16

Showing the most recent 10 out of 41 publications