The long-term goal of this project is to use C. elegans to understand the molecular basis of sexual dimorphism and sex-specific organogenesis. Sexual differentiation is central to normal development but the molecular mechanisms controlling it are poorly understood. The focus of this application is on two sexually dimorphic features, male sensory rays (V rays) and the somatic gonad, which serve as paradigms for sex-specific nervous system development and sex-specific organogenesis. The central hypothesis is that specific regulatory pathways act downstream of the master regulator TRA-1 to control sexual differentiation of specific tissues and organs. This laboratory previously discovered two key downstream factors: the DM domain protein MAB-3, and the forkhead protein FKH-6. Guided by strong preliminary data, our specific aims are to elucidate how sex-specific nervous system development is regulated in the male tail by TRA-1 and MAB-3, and how sex-specific gonadogenesis is controlled by TRA-1 and FKH-6.
The first aim i nvestigates the mechanism by which MAB-3 represses the antineural bHLH gene ref-1 in males, evaluates candidate MAB-3 corepressors, finds a protein that activates ref-1, and investigates the role of TRA-1.
The second aim i dentifies targets of FKH-6 regulation and suppressors of fkh-6 mutants, evaluates candidate FKH-6 coregulators, and investigates how TRA-1 both antagonizes and potentiates FKH-6 functions. The proposed research will uncover the molecular basis of a critical but poorly understood aspect of development, using innovative approaches including informatics-based identification of target genes, in vivo DNA binding assays, mining of """"""""phenome"""""""" databases, and development of inducible tissue- specific RNAi methods. This work has clear relevance to human health: DM domain proteins and forkhead proteins control sexual differentiation in mammals, and we recently discovered that mutations in a DM domain gene cause testicular cancer. Failure of sexual differentiation causes sex reversal, sexual ambiguity, urogenital malformation, infertility, and gonadal cancer. This proposal investigates DM domain protein interactions with conserved chromatin regulators, potentially opening the way to development of therapeutic agents. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM053099-11
Application #
7287709
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Haynes, Susan R
Project Start
1996-08-01
Project End
2010-08-31
Budget Start
2007-09-01
Budget End
2008-08-31
Support Year
11
Fiscal Year
2007
Total Cost
$297,023
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Genetics
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Weinberg, Peter; Berkseth, Matthew; Zarkower, David et al. (2018) Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity. Curr Biol 28:623-629.e3
Zhang, Teng; Zarkower, David (2017) DMRT proteins and coordination of mammalian spermatogenesis. Stem Cell Res 24:195-202
Kroetz, Mary B; Zarkower, David (2015) Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts. G3 (Bethesda) 5:2831-41
Murphy, Mark W; Lee, John K; Rojo, Sandra et al. (2015) An ancient protein-DNA interaction underlying metazoan sex determination. Nat Struct Mol Biol 22:442-51
Berkseth, Matt; Ikegami, Kohta; Arur, Swathi et al. (2013) TRA-1 ChIP-seq reveals regulators of sexual differentiation and multilevel feedback in nematode sex determination. Proc Natl Acad Sci U S A 110:16033-8
Chong, Tracy; Collins 3rd, James J; Brubacher, John L et al. (2013) A sex-specific transcription factor controls male identity in a simultaneous hermaphrodite. Nat Commun 4:1814
Gamble, Tony; Zarkower, David (2012) Sex determination. Curr Biol 22:R257-62
Matson, Clinton K; Zarkower, David (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13:163-74
Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt et al. (2011) MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. Dev Cell 20:677-88
Kalis, Andrea K; Murphy, Mark W; Zarkower, David (2010) EGL-5/ABD-B plays an instructive role in male cell fate determination in the C. elegans somatic gonad. Dev Biol 344:827-35

Showing the most recent 10 out of 18 publications