Structure and Mechanism of Class II Aminoacyl-tRNA Synthetases All cells require protein synthesis to maintain their core physiology, as well as permit orderly cell division and regulated differentiation. Mutations and expression changes in enzymes of the translation apparatus can present with complex phenotypes in human diseases, representing a major gap in knowledge. The limited tissue and organ specific nature (e,g, the brain) of these diseases is also a challenge. The long term objective of this work is to discover how specific changes, both genetic and at the level of expression, in the function of conserved components of the translational apparatus bring about human disease. A better understanding of this gene phenotype relationship as it relates to translation factors will have major implications for human health. The immediate goal of this application is to understand how two aminoacyl-tRNA synthetases- histidyl- tRNA synthetase (HARS) and threonyl-tRNA synthetase (TARS)- undergo functional switching between their canonical role in protein synthesis and secondary roles in other physiological processes. Alterations in this switching in HARS and TARS may be linked to Type IIIb Usher syndrome and cancer, respectively. Here, we will test specific hypotheses to account for these secondary functions. For HARS and the Type IIIb Usher syndrome, we hypothesize that the mutant substitution linked to the disease decreases histidyl-tRNAHis levels, leading to near codon suppression or nutritional deficit dependent stress responses. Alternatively, protein- protein interactions or signaling pathways associated with a previously undiscovered secondary function may be perturbed. For TARS, we hypothesize that its association with cancer requires a switch to a non-canonical angiogenesis related function and its subsequent export from cells via an exosome dependent pathway. The application contains two multi-part Aims: (1) Determine the molecular basis of the link between Y454S human histidyl-tRNA synthetase and type III Usher syndrome by (i) measuring the contribution of HisRS under-acylation/miscoding to the Usher IIIB phenotype;(ii) determining the extent to which Type IIIb Usher Syndrome is the result of a loss a HARS-protein protein interaction;and (iii) determining the association of Y454S HisRS with altered signaling by determining the phosphorylation state of HARS. (2) Determine the mechanism by which human threonyl-tRNA synthetase switches between its canonical aminoacylation function and its novel angiogenic function by (i) Determining how the intracellular location of TARS changes in response to drug, hypoxia, nutritional deficit, and cytokines that elicit secretion (TNF-a);(ii) determining the extent to which TARS secretion and pro-angiogenic functios are associated with exosomes; and (iii), determining the role of TARS's cryptic GTPase function in pro-angiogenic functions. The research is significant for the knowledge gained regarding the underlying basis of protein functional diversity and flexibility, and for the high likelihood that further insights into the mechanisms of sensorineural disease and cancer will be gained.

Public Health Relevance

Structure and Mechanism of Class II Aminoacyl-tRNA Synthetases A better understanding of the molecular basis of disease has potential benefits to public health. By distinguishing between mechanisms that involve either altered decoding or altered signal transduction associated with histidyl-tRNA synthetase, physiologically rationale treatments for Usher Syndrome might be designed. Similarly, understanding how threonyl-tRNA synthetase executes its pro- angiogenic functions is likely to aid in the diagnosis and treatment of angiogenesis-dependent cancers.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Barski, Oleg
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Vermont & St Agric College
Schools of Medicine
United States
Zip Code
Williams, Tamara F; Mirando, Adam C; Wilkinson, Barrie et al. (2013) Secreted Threonyl-tRNA synthetase stimulates endothelial cell migration and angiogenesis. Sci Rep 3:1317
Li, Li; Weinreb, Violetta; Francklyn, Christopher et al. (2011) Histidyl-tRNA synthetase urzymes: Class I and II aminoacyl tRNA synthetase urzymes have comparable catalytic activities for cognate amino acid activation. J Biol Chem 286:10387-95
Minajigi, Anand; Deng, Bin; Francklyn, Christopher S (2011) Fidelity escape by the unnatural amino acid ?-hydroxynorvaline: an efficient substrate for Escherichia coli threonyl-tRNA synthetase with toxic effects on growth. Biochemistry 50:1101-9
Pasman, Zvi; Robey-Bond, Susan; Mirando, Adam C et al. (2011) Substrate specificity and catalysis by the editing active site of Alanyl-tRNA synthetase from Escherichia coli. Biochemistry 50:1474-82
Francklyn, Christopher S; Minajigi, Anand (2010) tRNA as an active chemical scaffold for diverse chemical transformations. FEBS Lett 584:366-75
Minajigi, Anand; Francklyn, Christopher S (2010) Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. J Biol Chem 285:23810-7
Guth, Ethan; Farris, Mindy; Bovee, Michael et al. (2009) Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli. J Biol Chem 284:20753-62
Wang, Qin; Rajshankar, Dhaarmini; Branch, Donald R et al. (2009) Protein-tyrosine phosphatase-alpha and Src functionally link focal adhesions to the endoplasmic reticulum to mediate interleukin-1-induced Ca2+ signaling. J Biol Chem 284:20763-72
Francklyn, Christopher S; First, Eric A; Perona, John J et al. (2008) Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods 44:100-18
Minajigi, Anand; Francklyn, Christopher S (2008) RNA-assisted catalysis in a protein enzyme: The 2'-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc Natl Acad Sci U S A 105:17748-53

Showing the most recent 10 out of 25 publications