Delineating folding mechanisms has tremendous implications for human health and biological function. Folding errors in vivo may be responsible for the loss of more than 30% of synthesized polypeptides, while misfolded conformers have been implicated in a large number of human diseases, including cancer and amyloidoses. The loss of protein stability is the cause of 75% of the monogenic diseases. In addition, the ubiquitous presence of folding chaperones testifies to the importance of the folding process in many cellular activities. The wide range of biological processes and diseases centered around protein folding emphasizes the importance of mechanistic studies of this universal process. This current proposal will integrate experiment and simulations to address three outstanding questions concerning protein folding. Although there is a consensus that transition states (TSs) adopt a native-like topology, they have been described at times as polarized, expanded versions of the native state, either containing extensive amounts of secondary structure or formed in a general collapse around a diffuse nucleus. Does this diversity reflect reality? Or is it the consequence of inadequate methods to probe the TS, and a more coherent picture exists to describe TSs? Even more uncertainty surrounds the early steps leading up to the TS - is there is a collapse occurring via multiple, diverse routes represented by broad funnel, or is there a dominant ordered pathway with a sequential build-up of H-bonded structure, as we have proposed for ubiquitin? From the computational standpoint, can an algorithm that mimics the folding process predict pathways and, consequently, native structures without utilizing homology? In Aim 1, we will test our prediction that 70% of the native topology is present in the TS of many proteins and then investigate the origin of the 70% level. To do this, we will apply our ?-analysis method to characterize a selected set of naturally occurring and designed proteins.
In Aim 2, we will advance an algorithm that utilizes the folding process to predict pathways and structure without resorting to homology, and in the process test various folding models.
In Aim 3, we will rationally populate early and late intermediates and characterize them using NMR hydrogen exchange and relaxation dispersion methods. We will perform a """"""""protein autopsy"""""""" in which buried Leu?Glu- mutations drive a pH-dependent subglobal unfolding to populate late intermediates.

Public Health Relevance

Delineating folding mechanisms has tremendous implications for human health and biological function. The proposed research will identify the basic principles governing protein folding, including the nature of the early events leading to the rate-limiting step, and will use this information to predict pathways and structure without resorting to homology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM055694-16
Application #
8115975
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Wehrle, Janna P
Project Start
1996-08-01
Project End
2013-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
16
Fiscal Year
2011
Total Cost
$345,987
Indirect Cost
Name
University of Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Yu, Wookyung; Baxa, Michael C; Gagnon, Isabelle et al. (2016) Cooperative folding near the downhill limit determined with amino acid resolution by hydrogen exchange. Proc Natl Acad Sci U S A 113:4747-52
Basanta, Benjamin; Chan, Kui K; Barth, Patrick et al. (2016) Introduction of a polar core into the de novo designed protein Top7. Protein Sci 25:1299-307
Baxa, Michael C; Yu, Wookyung; Adhikari, Aashish N et al. (2015) Even with nonnative interactions, the updated folding transition states of the homologs Proteins G & L are extensive and similar. Proc Natl Acad Sci U S A 112:8302-7
Watkins, Herschel M; Simon, Anna J; Sosnick, Tobin R et al. (2015) Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions. Proc Natl Acad Sci U S A 112:6631-6
Skinner, John J; Yu, Wookyung; Gichana, Elizabeth K et al. (2014) Benchmarking all-atom simulations using hydrogen exchange. Proc Natl Acad Sci U S A 111:15975-80
Zayner, Josiah P; Sosnick, Tobin R (2014) Factors that control the chemistry of the LOV domain photocycle. PLoS One 9:e87074
Baxa, Michael C; Haddadian, Esmael J; Jumper, John M et al. (2014) Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations. Proc Natl Acad Sci U S A 111:15396-401
Virtanen, J J; Sosnick, T R; Freed, K F (2014) Ionic strength independence of charge distributions in solvation of biomolecules. J Chem Phys 141:22D503
Adhikari, Aashish N; Freed, Karl F; Sosnick, Tobin R (2013) Simplified protein models: predicting folding pathways and structure using amino acid sequences. Phys Rev Lett 111:028103
Walters, Benjamin T; Mayne, Leland; Hinshaw, James R et al. (2013) Folding of a large protein at high structural resolution. Proc Natl Acad Sci U S A 110:18898-903

Showing the most recent 10 out of 34 publications