How organisms respond to light and how photosensory receptors mediate light responses are basic questions in biology. Our long-term goal is to find the molecular explanation of these questions, using the cryptochrome photoreceptor as a model system. Cryptochromes (CRY) are the blue/UV-A light receptors and/or core components of the circadian oscillator found in all evolutionary lineages including human. My laboratory focuses on the study of plant cryptochromes. In the previous funding periods, we discovered two major CRY2 signal transduction mechanisms: the CIB1 (Cryptochrome-Interacting bHLH 1)-based transcription- regulatory mechanism and SPA1/COP1 (Suppressor of Phytochrome A 1/Constitutive Photomorphogenesis 1)-based proteolysis-regulatory mechanism. More recently, we identified a CIB-interacting protein FOF1 (F-box of Flowering 1) responsible for the blue light-regulated degradation of CIB1;two new blue light-specific CRY2-interacting proteins: PRR5 (Pseudo Response Regulator 5) that is a core protein of the circadian clock, and a novel protein BIC1 (Blue- light Inhibitor of CRYs 1) that suppresses blue light-dependent phosphorylation, degradation, and activities of CRY1 and CRY2. Based on these discoveries and newly developed tools, we propose to study three key issues of light signal transduction: the photochemical mechanism underlying photoexcitation of the CRY photoreceptor, mechanisms governing the function and regulation of the CRY complexome, and the mechanism underlying a novel coding sequence (CDS)-dependent blue light regulation of CRY2 expression.

Public Health Relevance

How organisms respond to light and how photosensory receptors mediate light responses are some of the most basic questions in biology. Cryptochromes (CRY) are blue/UV-A light receptors found in bacteria, plants, and animals including human, but the molecular mechanisms of CRYs remain not well understood. We propose to test the working hypotheses resulting from previous studies and to investigate how light regulates gene expression and plant development.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Maas, Stefan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Arts and Sciences
Los Angeles
United States
Zip Code
Liu, Bobin; Yang, Zhaohe; Gomez, Adam et al. (2016) Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J Plant Res 129:137-48
Gao, Jie; Wang, Xu; Zhang, Meng et al. (2015) Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proc Natl Acad Sci U S A 112:9135-40
Wang, Qin; Barshop, William D; Bian, Mingdi et al. (2015) The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2. Mol Plant 8:631-43
Fristedt, Rikard; Scharff, Lars B; Clarke, Cornelia A et al. (2014) RBF1, a plant homolog of the bacterial ribosome-binding factor RbfA, acts in processing of the chloroplast 16S ribosomal RNA. Plant Physiol 164:201-15
Wang, Xu; Wang, Qin; Nguyen, Paula et al. (2014) Cryptochrome-mediated light responses in plants. Enzymes 35:167-89
Liu, Hongtao; Wang, Qin; Liu, Yawen et al. (2013) Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc Natl Acad Sci U S A 110:17582-7
Liu, Yawen; Li, Xu; Li, Kunwu et al. (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet 9:e1003861
Wang, Honggui; Zhang, Zenglin; Li, Hongyu et al. (2013) CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis. J Exp Bot 64:1017-24
Wang, Qin; Zhu, Ziqiang; Ozkardesh, Kara et al. (2013) Phytochromes and phytohormones: the shrinking degree of separation. Mol Plant 6:5-7
Meng, Yingying; Li, Hongyu; Wang, Qin et al. (2013) Blue light-dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell 25:4405-20

Showing the most recent 10 out of 20 publications