Protease inhibitors are essential components in the chemotherapy of HIV-1 infection. Despite their success, the long-term efficacy of antiretroviral therapies is continuously hindered by the emergence of viral strains that exhibit resistance to protease inhibitors. The onset of drug resistance is often accelerated by therapy lapses associated with the occurrence of severe side effects in patients undergoing highly active anti-retroviral therapy (HAART). In addition, the viral subtypes prevalent in Africa, where the vast majority of HIV infections take place, are not the same as the one responsible for the infections in America and Europe. Complicating things even further, a different HIV virus, HIV-2, although less prevalent than HIV-1, is also able to cause AIDS. It is clear that successful protease inhibitors would have to maintain appropriate potency against a wide range of target variability. As of today, the FDA has approved nine protease inhibitors for clinical use. While all of them target the active site pocket of the same enzyme, they do so with different potency, different resistance profiles and different selectivity towards unwanted targets. An ideal inhibitor should have extremely high potency against the wild type protease, exhibit low susceptibility to protease mutations associated with drug resistance and not interfere with human targets, thus minimizing side effects. The main goal of this project is to develop precise thermodynamic and structural guidelines to develop such inhibitors. The specific goals of this project are: - Development of thermodynamic and structural rules aimed at achieving extremely high affinity. - Identification of thermodynamic and structural determinants that confer protease inhibitors low susceptibility to mutations and efficacy against different viral subtypes, including HIV-2. - Development of thermodynamic and structural rules aimed at limiting the affinity of protease inhibitors to unwanted targets and hence improving selectivity. The goals will be achieved by a combination of experimental thermodynamic measurements (high sensitivity isothermal titration calorimetry and high sensitivity differential scanning calorimetry), structure determination (x-ray crystallography) and structure-based thermodynamic analysis.

Public Health Relevance

More than 30 million people in the world are infected with HIV/AIDS and more than 2 million die each year. Despite their initial success, antiretroviral therapies are hindered by the emergence of drug resistant viral strains and by the occurrence of severe side effects. The main goal of this project is to develop precise guidelines for the development of antiretrovirals, especially protease inhibitors, characterized by extremely high potency, low susceptibility to drug resistance and minimal side effects.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM057144-15
Application #
8318149
Study Section
AIDS Discovery and Development of Therapeutics Study Section (ADDT)
Program Officer
Smith, Ward
Project Start
1998-03-01
Project End
2013-12-31
Budget Start
2012-09-01
Budget End
2013-12-31
Support Year
15
Fiscal Year
2012
Total Cost
$479,235
Indirect Cost
$184,054
Name
Johns Hopkins University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Chauhan, Jay; Chen, Shen-En; Fenstermacher, Katherine J et al. (2015) Synthetic, structural mimetics of the ?-hairpin flap of HIV-1 protease inhibit enzyme function. Bioorg Med Chem 23:7095-109
Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto (2015) Characterization of protein-protein interactions by isothermal titration calorimetry. Methods Mol Biol 1278:183-204
Evans, Sean L; Schön, Arne; Gao, Qimeng et al. (2014) HIV-1 Vif N-terminal motif is required for recruitment of Cul5 to suppress APOBEC3. Retrovirology 11:4
Miura, Takuya; Hidaka, Koushi; Azai, Yukiko et al. (2014) Optimization of plasmepsin inhibitor by focusing on similar structural feature with chloroquine to avoid drug-resistant mechanism of Plasmodium falciparum. Bioorg Med Chem Lett 24:1698-701
Thanigaimalai, Pillaiyar; Konno, Sho; Yamamoto, Takehito et al. (2013) Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies. Eur J Med Chem 68:372-84
Afanador, Gustavo A; Muench, Stephen P; McPhillie, Martin et al. (2013) Discrimination of potent inhibitors of Toxoplasma gondii enoyl-acyl carrier protein reductase by a thermal shift assay. Biochemistry 52:9155-66
Thanigaimalai, Pillaiyar; Konno, Sho; Yamamoto, Takehito et al. (2013) Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: structure-activity relationship study. Eur J Med Chem 65:436-47
Liu, Yingyun; Schön, Arne; Freire, Ernesto (2013) Optimization of CD4/gp120 inhibitors by thermodynamic-guided alanine-scanning mutagenesis. Chem Biol Drug Des 81:72-8
Resendiz, Marino J E; Schon, Arne; Freire, Ernesto et al. (2012) Photochemical control of RNA structure by disrupting ýý-stacking. J Am Chem Soc 134:12478-81
Schon, Arne; Lam, Sonia Y; Freire, Ernesto (2011) Thermodynamics-based drug design: strategies for inhibiting protein-protein interactions. Future Med Chem 3:1129-37

Showing the most recent 10 out of 29 publications