The 174-base prohead RNA (pRNA) of bacteriophage o29 is an essential component of the molecular motor that packages the viral genomic DNA into the viral precursor capsid (prohead). This motor is one of the strongest molecular motors known, generating forces greater than 60 pN. o29 is a premier model system for DNA packaging and serves as a model for analogous processes in certain animal viruses, such as herpes- and adenoviruses. pRNA binds to the prohead by forming a novel cyclic pentamer via intermolecular base pairing between identical molecules. The RNA ring then provides a scaffold upon which the packaging ATPase assembles into its functional ring shape. In addition to providing a scaffold function, pRNA is hypothesized to function in higher order processes of packaging, such as coordination and communication within the motor. Study of the structure and function of this RNA-dependent DNA packaging motor may have general significance in uncovering targets for antiviral agents. Additionally, the properties of pRNA are being exploited for nanomedicine applications. The ultimate goal of the research is to determine the structure and functional roles of pRNA in the mechanism of DNA translocation. Here we employ a highly integrated, multi-disciplinary approach, including genetic and biochemical analysis, X-ray crystallography, cryoEM 3-D reconstruction and single molecule laser tweezers to investigate the structure/function relationship of pRNA: 1) X-ray crystallography will be used to complete the atomic structure of pRNA, and pRNA- ATPase complex formation will be characterized by biochemical analysis;2) characterize functional elements of pRNA involved in motor assembly, communication and coordination by site-directed mutagenesis and chimeric RNAs;and 3) investigate pRNA-mediated assembly and motor communication and coordination using ordered heteromeric pRNA rings containing wild-type and mutant pRNAs.

Public Health Relevance

The design of new drugs depends upon a thorough understanding of the basic mechanisms of viral infection and assembly. The infection and assembly mechanisms of the bacteriophage o29 serve as models for understanding the infection and assembly mechanisms of dsDNA viruses such as the medically relevant herpesvirus and adenovirus, which have significant commonalities to o29. The assembly processes of o29 studied here, such as DNA packaging, are targets for antiviral agents.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01GM059604-13A1
Application #
8755529
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Sakalian, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Dentistry
Type
Schools of Dentistry/Oral Hygn
DUNS #
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Liu, Shixin; Chistol, Gheorghe; Hetherington, Craig L et al. (2014) A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157:702-13
Cao, Sheng; Saha, Mitul; Zhao, Wei et al. (2014) Insights into the structure and assembly of the bacteriophage 29 double-stranded DNA packaging motor. J Virol 88:3986-96
Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (2011) Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity. J Biol Chem 286:30759-68
Ding, Fang; Lu, Changrui; Zhao, Wei et al. (2011) Structure and assembly of the essential RNA ring component of a viral DNA packaging motor. Proc Natl Acad Sci U S A 108:7357-62
Grimes, Shelley; Ma, Shuhua; Gao, Jiali et al. (2011) Role of ?29 connector channel loops in late-stage DNA packaging. J Mol Biol 410:50-9
Moffitt, Jeffrey R; Chemla, Yann R; Bustamante, Carlos (2010) Mechanistic constraints from the substrate concentration dependence of enzymatic fluctuations. Proc Natl Acad Sci U S A 107:15739-44
Aathavan, K; Politzer, Adam T; Kaplan, Ariel et al. (2009) Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461:669-73
Moffitt, Jeffrey R; Chemla, Yann R; Aathavan, K et al. (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446-50
Morais, Marc C; Koti, Jaya S; Bowman, Valorie D et al. (2008) Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor. Structure 16:1267-74
Koti, Jaya S; Morais, Marc C; Rajagopal, Raj et al. (2008) DNA packaging motor assembly intermediate of bacteriophage phi29. J Mol Biol 381:1114-32

Showing the most recent 10 out of 15 publications