The selective degradation of intracellular proteins is of central importance for the generation, function and survival of eukaryotic cells. The ubiquitin-proteasome system (UPS) is responsible for the controlled degradation of most intracellular proteins, and abnormal regulation of the UPS is associated with a variety of human diseases, including cancer, myopathies, and neurodegenerative disorders. Although dramatic progress has been made in understanding the structure and function of proteasomes, we still know extremely little about how proteasome activity is dynamically regulated in time and space. The activity of the 26S proteasome declines with age, but the underlying molecular mechanisms remain unknown. Our prior work focused on the regulation of caspases by the UPS, and results obtained during the current funding cycle revealed the joint use of proteasomes and caspases in the """"""""controlled demolition"""""""" of cellular structures that is needed for terminal sperm differentiatio in Drosophila. Similar mechanisms are thought to mediate the remodeling of other cell types, including neurons and muscle, in both insects and vertebrates. The overall goal of this project is to understand how proteasomes are regulated to promote changes in the cyto architecture, size and survival of cells, and how this process affects age-related neuronal degeneration. We recently discovered a novel proteasome regulatory mechanism that offers unique opportunities to study proteasome regulation in the context of both normal organismal development, and in response to stress and aging. In particular, we found that the ADP-ribosyl transferase Tankyrase (TNKS) binds to and critically activates the proteasome regulator PI31 (Proteasome Inhibitor of 31kDa) to promote 26S proteasome assembly. These results suggest a potential mechanistic link between energy metabolism, NAD+, DNA-damage and proteasome regulation that is likely to play important roles in development, protein homeostasis and aging. Here, we will investigate the biological role and regulation of TNKS/PI31-mediated proteasome activation. We propose to use a multi-disciplinary approach that integrates Drosophila genetics, developmental biology, cell biology, and neurobiology, biochemistry, and small- molecule chemical inhibitors. Amongst other things, we will test the specific hypotheses that the TNKS/PI31-pathway is regulated by NAD+ that activation of this pathway protects against phototoxic stress and that diminished activity of this pathway with age causes increased vulnerability to neuronal degeneration. The current proposal brings, for the first time, the full power of Drosophila genetics and molecular biology to investigate these questions and combines it with biochemical studies in both insect and mammalian cells to explore new paths towards the clinic. We expect that this project will fundamentally advance our understanding of how protein degradation is regulated and provide new insights how to manipulate this process for the treatment of human diseases.

Public Health Relevance

The proteasome is a validated anti-cancer target, and the proteasome inhibitor bortezomib (Velcade) is clinically used for the treatment of multiple myeloma and mantle cell lymphoma. On the other hand, many age-related diseases are caused by phototoxic stress due to insufficient degradation of abnormal proteins, including neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's disease. The proposed project will provide fundamental new insights and tools to better understand how proteasome activity can be manipulated to treat human diseases, including cancer, neuronal degeneration and other age-related ailments.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM060124-14A1
Application #
8761407
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Gindhart, Joseph G
Project Start
1999-08-01
Project End
2019-08-31
Budget Start
2014-09-04
Budget End
2015-08-31
Support Year
14
Fiscal Year
2014
Total Cost
$354,847
Indirect Cost
$145,498
Name
Rockefeller University
Department
Biology
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Levin, Avi; Minis, Adi; Lalazar, Gadi et al. (2018) PSMD5 Inactivation Promotes 26S Proteasome Assembly during Colorectal Tumor Progression. Cancer Res 78:3458-3468
Gerstberger, Stefanie; Meyer, Cindy; Benjamin-Hong, Sigi et al. (2017) The Conserved RNA Exonuclease Rexo5 Is Required for 3' End Maturation of 28S rRNA, 5S rRNA, and snoRNAs. Cell Rep 21:758-772
Dorot, Orly; Steller, Hermann; Segal, Daniel et al. (2017) Past1 Modulates Drosophila Eye Development. PLoS One 12:e0169639
Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis et al. (2016) Ferritin Assembly in Enterocytes of Drosophila melanogaster. Int J Mol Sci 17:27
Mollereau, B; Rzechorzek, N M; Roussel, B D et al. (2016) Adaptive preconditioning in neurological diseases - therapeutic insights from proteostatic perturbations. Brain Res 1648:603-616
Maor, Gali; Cabasso, Or; Krivoruk, Olga et al. (2016) The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum Mol Genet 25:2712-2727
Soteriou, Despina; Kostic, Lana; Sedov, Egor et al. (2016) Isolating Hair Follicle Stem Cells and Epidermal Keratinocytes from Dorsal Mouse Skin. J Vis Exp :
Minis, Adi; Steller, Hermann (2016) Krebs Cycle Moonlights in Caspase Regulation. Dev Cell 37:1-2
Steller, Hermann (2015) Preface. Curr Top Dev Biol 114:xv-xvi
Kim, A-Young; Seo, Jong Bok; Kim, Won-Tae et al. (2015) The pathogenic human Torsin A in Drosophila activates the unfolded protein response and increases susceptibility to oxidative stress. BMC Genomics 16:338

Showing the most recent 10 out of 42 publications