Our research is intended to elucidate the origins of specific folding and assembly behavior displayed by proteins. Proteins perform a vast array of functions that are essential for life, and protein activity usually depends on the adoption of higher order structure by the polypeptide chain. Therefore, understanding the factors that control folding and assembly, i.e., secondary, tertiary and often quaternary structure formation, for a given sequence of amino acid residues is a fundamental scientific goal. Our research employs standard characterization tools;in addition, we strive to create new tools that offer unique approaches to important questions. For example, we are developing a set of novel molecular units that enable thermodynamic analysis of parallel beta-sheet secondary structure, and one current goal is to use these tools to elucidate how basic parameters such as number of strands or length of strands influence parallel beta-sheet stability. Our unique tools in this case are unnatural diamine or diacid segments that link peptide segments via their C- or N-termini and promote parallel beta-sheet formation in water. Such linkers are not available in classical protein science, and this research requires a laboratory, such as ours, that has experience in both biophysical characterization and organic synthesis. Another chemical tool recently developed by our group, the """"""""backbone thioester exchange"""""""" (BTE) method, offers a unique approach to analysis of sequence-stability correlations at secondary, tertiary and/or quaternary structure levels in small polypeptides. The proposed research includes the use of BTE to probe the factors that govern affinity and selectivity in side-by-side interactions between alpha-helical segments (e.g., coiled-coils). Helix-helix association is a prominent feature of protein tertiary and quaternary structure, and our studies will address previously unanswered questions in this area. In addition, we propose to extend BTE to the study of helix-helix interactions in lipid bilayers. Current understanding of the forces that control protein folding and association in membranes is underdeveloped relative to what is known about proteins in solution, and a major stumbling block in the membrane protein field is lack of effective methods for thermodynamic analysis of structural phenomena. BTE could represent a powerful new tool in this field. We want to extend our understanding beyond proteins to unnatural oligomers that display protein-like structures. Such efforts will broaden fundamental understanding of the ways in which networks of noncovalent interactions control the conformations and binding propensities of flexible oligomers. In addition, this component of our research is motivated by the long-term prospect that unnatural oligomers with well-understood folding rules could provide a basis for creating new kinds of biomedically useful agents.

Public Health Relevance

Proteins are the workhorse molecules of life. The functions of proteins depend critically on the structures they adopt, and a major goal of our work is to elucidate factors that govern protein structure. Unnatural molecules that display protein-like structural behavior could ultimately be engineered to display biomedically useful protein-like functions, and our goals include the discovery and characterization of new protein-mimetic systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM061238-11
Application #
7848985
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Smith, Ward
Project Start
2000-06-01
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
11
Fiscal Year
2010
Total Cost
$322,105
Indirect Cost
Name
University of Wisconsin Madison
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Thomas, Nicole C; Bartlett, Gail J; Woolfson, Derek N et al. (2017) Toward a Soluble Model System for the Amyloid State. J Am Chem Soc 139:16434-16437
Kreitler, Dale F; Mortenson, David E; Forest, Katrina T et al. (2016) Effects of Single ?-to-? Residue Replacements on Structure and Stability in a Small Protein: Insights from Quasiracemic Crystallization. J Am Chem Soc 138:6498-505
Fu, Li; Wang, Zhuguang; Psciuk, Brian T et al. (2015) Characterization of Parallel ?-Sheets at Interfaces by Chiral Sum Frequency Generation Spectroscopy. J Phys Chem Lett 6:1310-5
Hayouka, Zvi; Thomas, Nicole C; Mortenson, David E et al. (2015) Quasiracemate Crystal Structures of Magainin 2 Derivatives Support the Functional Significance of the Phenylalanine Zipper Motif. J Am Chem Soc 137:11884-7
Kung, Vanessa M; Cornilescu, Gabriel; Gellman, Samuel H (2015) Impact of Strand Number on Parallel ?-Sheet Stability. Angew Chem Int Ed Engl 54:14336-9
Mortenson, David E; Steinkruger, Jay D; Kreitler, Dale F et al. (2015) High-resolution structures of a heterochiral coiled coil. Proc Natl Acad Sci U S A 112:13144-9
Laaser, Jennifer E; Skoff, David R; Ho, Jia-Jung et al. (2014) Two-dimensional sum-frequency generation reveals structure and dynamics of a surface-bound peptide. J Am Chem Soc 136:956-62
Maynard, Stacy J; Almeida, Aaron M; Yoshimi, Yasuharu et al. (2014) New charge-bearing amino acid residues that promote ?-sheet secondary structure. J Am Chem Soc 136:16683-8
Hayouka, Zvi; Mortenson, David E; Kreitler, Dale F et al. (2013) Evidence for phenylalanine zipper-mediated dimerization in the X-ray crystal structure of a magainin 2 analogue. J Am Chem Soc 135:15738-15741
Johnson, Lisa M; Gellman, Samuel H (2013) ?-Helix mimicry with ?/?-peptides. Methods Enzymol 523:407-29

Showing the most recent 10 out of 48 publications