This project is aimed at understanding the genetic pathways that tissue growth and organ size in vivo. Previous studies in our laboratory have utilized a screen that utilizes genetic mosaics generated in the developing Drosophila eye to identify mutations that result in tissue overgrowth. Many of the mutations that have been identified in the screen have been characterized during previous funding periods of this grant. In this proposal, the first two Specific Aims detail experiments to characterize two loci that were identified in the screen of the X-chromosome: ovo and HK115.
Aim 1 describes a strategy for identifying the open reading frame that is mutated in the HK115 mutants and experiments to determine how HK115 regulates tissue growth and apoptosis.
Aim 2 outlines studies for characterizing the pathway by which ovo, which encodes a transcription factor regulates growth and cell cycle progression.
Aims 3 and 4 address a poorly understood phenomenon known as cell competition by which cells are able to kill adjacent cells that grow more slowly. A novel screen has been developed to identify supercompetitors - mutations that enable mutant cells to kill their wild-type neighbors. Mutations in crumbs, a regulator of apicobasal polarity were identified in the screen.
Aim 3 describes an approach to determine how crumbs functions with respect to cell competition.
Aim 4 consists of a broad strategy, including a new genetic screen, for identifying and characterizing additional genes that regulate cell competition. These studies are likely to provide valuable insights into how growth is regulated during development as well as the growth abnormalities that occur during the development of tumors.

Public Health Relevance

The precise regulation of cell growth, cell division and survival are necessary for the proper development of an organism. Perturbations of these processes can result in birth abnormalities and cancer. This proposal describes a genetic approach, using the fruit fly, to improve our understanding the mechanisms that regulate tissue growth.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Development - 2 Study Section (DEV2)
Program Officer
Gaillard, Shawn R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
Schools of Arts and Sciences
United States
Zip Code
Bosch, Justin A; Sumabat, Taryn M; Hafezi, Yassi et al. (2014) The Drosophila F-box protein Fbxl7 binds to the protocadherin fat and regulates Dachs localization and Hippo signaling. Elife 3:e03383
Kanda, Hiroshi; Nguyen, Alexander; Chen, Leslie et al. (2013) The Drosophila ortholog of MLL3 and MLL4, trithorax related, functions as a negative regulator of tissue growth. Mol Cell Biol 33:1702-10
Worley, Melanie I; Setiawan, Linda; Hariharan, Iswar K (2013) TIE-DYE: a combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140:3275-84
Siegrist, Sarah E; Haque, Najm S; Chen, Chun-Hong et al. (2010) Inactivation of both Foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr Biol 20:643-8
Reis, Tania; Van Gilst, Marc R; Hariharan, Iswar K (2010) A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability. PLoS Genet 6:e1001206
Halme, Adrian; Cheng, Michelle; Hariharan, Iswar K (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20:458-63
Herz, Hans-Martin; Madden, Laurence D; Chen, Zhihong et al. (2010) The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol Cell Biol 30:2485-97
Harvey, Kieran F; Mattila, Jaakko; Sofer, Avi et al. (2008) FOXO-regulated transcription restricts overgrowth of Tsc mutant organs. J Cell Biol 180:691-6
Tseng, Ai-Sun Kelly; Tapon, Nicolas; Kanda, Hiroshi et al. (2007) Capicua regulates cell proliferation downstream of the receptor tyrosine kinase/ras signaling pathway. Curr Biol 17:728-33
Pfleger, Cathie M; Harvey, Kieran F; Yan, Hua et al. (2007) Mutation of the gene encoding the ubiquitin activating enzyme ubal causes tissue overgrowth in Drosophila. Fly (Austin) 1:95-105

Showing the most recent 10 out of 20 publications