Pathogenic bacteria must assemble and secrete virulence factors to interact with host tissues and cause disease. Gram-negative bacteria have an outer membrane in addition to a cytoplasmic membrane and must secrete virulence factors across both these barriers. The mechanisms by which this occurs can be quite complex and are not well understood. The chaperone/usher pathway is a virulence protein secretion pathway that requires two components for secretion across the outer membrane: a periplasmic chaperone and an outer membrane protein termed an usher. The chaperone directs proper folding of the secreted proteins and prevents off-pathway interactions. The usher serves as an assembly platform at the outer membrane and provides a secretion channel to the cell surface. The chaperone/usher pathway is required for assembly and secretion of a superfamily of virulence-associated surface structures by a broad range of pathogens. The prototypical organelles assembled by this pathway are the P and type 1 pili expressed by uropathogenic Escherichia coli, the primary causative agent of urinary tract infections. P and type 1 pili are critical virulence factors, allowing binding and colonization of the kidney and bladder, respectively. The goals of this proposal are to probe the structure and function of the usher to gain an understanding of the molecular mechanisms governing pilus biogenesis across the outer membrane and to use the chaperone/usher pathway as a model system for understanding virulence factor secretion in Gram-negative bacteria. This proposal will test the hypothesis that the usher functions as a dimeric complex in the outer membrane to recognize, recruit and position chaperone-subunit complexes to catalyze the exchange of chaperone-subunit for subunit-subunit interactions, promote ordered pilus assembly, and allow secretion of the pilus fiber to the cell surface. The first specific aim will investigate the function of the usher as a catalytic machine and gated secretion channel for pilus biogenesis at the bacterial outer membrane. The second specific will determine the structural basis for pilus assembly and secretion at the outer membrane usher. This application will provide insights into mechanisms of protein secretion, organelle biogenesis, and the assembly of bacterial virulence factors.

Public Health Relevance

The work described in this proposal will elucidate mechanisms of organelle biogenesis and virulence factor secretion by pathogenic bacteria. Knowledge gained from this proposal will create opportunities for the development of novel antimicrobial agents, urgently needed during this time of increasing antibiotic resistance.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM062987-12
Application #
8539802
Study Section
Special Emphasis Panel (ZRG1-IDM-S (03))
Program Officer
Chin, Jean
Project Start
2001-04-01
Project End
2015-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
12
Fiscal Year
2013
Total Cost
$383,006
Indirect Cost
$121,867
Name
State University New York Stony Brook
Department
Genetics
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Chahales, Peter; Hoffman, Paul S; Thanassi, David G (2016) Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane. Antimicrob Agents Chemother 60:2028-38
Pham, Thieng; Werneburg, Glenn T; Henderson, Nadine S et al. (2016) Effect of chaperone-adhesin complex on plug release by the PapC usher. FEBS Lett 590:2172-9
Pham, Thieng; Henderson, Nadine S; Werneburg, Glenn T et al. (2015) Electrostatic networks control plug stabilization in the PapC usher. Mol Membr Biol 32:198-207
Chahales, Peter; Thanassi, David G (2015) Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 3:
Werneburg, Glenn T; Henderson, Nadine S; Portnoy, Erica B et al. (2015) The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nat Struct Mol Biol 22:540-6
Chahales, Peter; Thanassi, David G (2015) A more flexible lipoprotein sorting pathway. J Bacteriol 197:1702-4
Farabella, Irene; Pham, Thieng; Henderson, Nadine S et al. (2014) Allosteric signalling in the outer membrane translocation domain of PapC usher. Elife 3:
Delcour, Anne H (2013) Electrophysiology of bacteria. Annu Rev Microbiol 67:179-97
Volkan, Ender; Kalas, Vasilios; Pinkner, Jerome S et al. (2013) Molecular basis of usher pore gating in Escherichia coli pilus biogenesis. Proc Natl Acad Sci U S A 110:20741-6
Henderson, Nadine S; Thanassi, David G (2013) Purification of the outer membrane usher protein and periplasmic chaperone-subunit complexes from the P and type 1 pilus systems. Methods Mol Biol 966:37-52

Showing the most recent 10 out of 31 publications