Many species of bacteria swim by means of filamentous organelles called flagella. Flagellar motility contributes to the virulence of many disease-causing bacteria and is important to the normal functioning of many species in the environment. The flagellum consists of a slender helical filament that functions as a propeller, turned by a membrane-embedded motor that obtains its energy from the membrane ion gradient. Motors can turn either clockwise (CW) or counter- clockwise (CCW). Regulated reversals in motor direction are the basis for directed movement in response to particular stimuli such as nutrients or repellents. The direction of rotation is controlled by a large multi-protein complex called the switch complex. In E. coli and a number of other species, function of the flagellar motor is additionally regulated by two other proteins: YcgR, which binds the second messenger cyclic-di-GMP and inhibits motor function during the conversion from the motile to the biofilm (surface-associated) state, and H-NS, a protein that functions in binding DNA and regulating gene expression in addition to regulating the motor. Both YcgR and H-NS have been shown to act at the switch complex. Goals of the present research are to understand the direction-reversing mechanism of the flagellar switch complex, and the mechanisms of motor regulation by YcgR and H-NS.
Four aims are proposed. The first is to characterize the responses of the switch complex to the chemotactic signaling molecule CheY-phosphate. This will be accomplished using a combination of structural, biochemical, and advanced spectroscopic methods.
The second aim i s to elucidate the mechanisms of motor regulation by YcgR and H-NS. Interactions of these proteins with the motor will be examined using structural and biochemical methods, and effects on motor function will be studied using various measures of motor performance. Goals will be to understand how YcgR inhibits motility as cells begin entry into the biofilm state, which is a process important in many infections, and to clarify the logic underlying the dual functions of H-NS in both motility and gene regulation.
A third aim i s to extend studies of the switch complex, which have previously been carried out mainly in E. coli, to the gram-positive species B. subtilis. Gram-positive species are abundant in nature and of great importance in both medicine and ecology. Guided by information developed in the E. coli system, studies of the B. subtilis switch should proceed in a relatively efficient fashion and will greatly augment our understanding of motility in bacteria.
The final aim i s to begin development of a formal quantitative model of the flagellar switch. This will provide a framework for integrating the available structural and mechanistic information and for exploring the implications of the model in quantitative terms.

Public Health Relevance

Many bacteria swim by means of rotating filaments called flagella, and this ability to move is a factor in the virulence of many disease-causing species. The proposed research seeks to understand the structure and mechanism of a large protein complex that has central functions in powering and controlling bacterial flagella. The findings wil contribute to our understanding of the disease-causing abilities of E. coli, Salmonella, and many other motile, flagellated pathogens.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Utah
Schools of Arts and Sciences
Salt Lake City
United States
Zip Code
Sircar, Ria; Greenswag, Anna R; Bilwes, Alexandrine M et al. (2013) Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family. J Biol Chem 288:13493-502
Paul, Koushik; Carlquist, William C; Blair, David F (2011) Adjusting the spokes of the flagellar motor with the DNA-binding protein H-NS. J Bacteriol 193:5914-22
Paul, Koushik; Gonzalez-Bonet, Gabriela; Bilwes, Alexandrine M et al. (2011) Architecture of the flagellar rotor. EMBO J 30:2962-71
Paul, Koushik; Brunstetter, Duncan; Titen, Sienna et al. (2011) A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A 108:17171-6
Sarkar, Mayukh K; Paul, Koushik; Blair, David F (2010) Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. J Biol Chem 285:675-84
Paul, Koushik; Nieto, Vincent; Carlquist, William C et al. (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38:128-39
Sarkar, Mayukh K; Paul, Koushik; Blair, David (2010) Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci U S A 107:9370-5
Kim, Eun A; Price-Carter, Marian; Carlquist, William C et al. (2008) Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change. Biochemistry 47:11332-9
Paul, Koushik; Harmon, Jacob G; Blair, David F (2006) Mutational analysis of the flagellar rotor protein FliN: identification of surfaces important for flagellar assembly and switching. J Bacteriol 188:5240-8
Yakushi, Toshiharu; Yang, Junghoon; Fukuoka, Hajime et al. (2006) Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol 188:1466-72

Showing the most recent 10 out of 14 publications