Hormones and neurotransmitters modulate a variety of physiological processes in cell growth and behavior. Their cognate cell surface receptors, which have seven transmembrane (7TM) domains, act by coupling to G proteins, promoting the dissociation of GDP and the subsequent loading of GTP. Signaling abates when GTP is hydrolyzed and GTPase activity is accelerated by Regulators of G Signaling (RGS) proteins having GTPase accelerating protein (GAP) activity. Recently, we discovered a naturally-occurring 7TM-RGS protein in Arabidopsis (AtRGS1) that we hypothesize to be a D-glucose receptor that has a D-glucose-dependent GAP activity. It is the first example of a receptor-GAP and is the prototype for a new class of D-glucose receptors. We also showed that the Arabidopsis G? subunit has rapid nucleotide exchange making nucleotide hydrolysis the rate limiting step. This property is in marked contrast to the slow nucleotide exchange property of all tested G? subunits where GDP release is the rate limiting step of the G protein cycle. Thus, we hypothesize that regulation of the G protein cycle is at the GTP hydrolysis step and is mediated by AtRGS1. Finally, we showed that a D-glucose metabolite dramatically increases the nucleotide hydrolysis rate of the G? subunit. Clearly, the Arabidopsis G protein cycle contains several interesting properties, namely activation of a G? subunit that does not require a GEF, regulation of the cycle at the GTP hydrolysis step, and a 7TM protein that may be the ligand-regulated GAP controlling the cycling rate. Because the Arabidopsis G? has the basic core structure and function of human G?, an understanding of how the Arabidopsis G? activation is regulated will provide insight into novel mechanisms to control human G? activation. The goal here is to understand how the G? protein is activated in the context of sugar signaling. Both hypothesis- and discovery-driven approaches will be taken to determine precisely what structure imparts regulatory control. Our initial study of the Arabidopsis G protein cycle illustrated how the G-protein cycle can be regulated by mechanisms apart by the classical GEF. Consequently, a greater degree of plasticity of the cycle is now appreciated and new entry points for regulation are revealed. Understanding the structure underlying these new mechanisms will provide a new means to regulate other G protein cycles. In humans, 7TM receptors and RGS proteins interact either directly or indirectly via adaptor proteins;these are two of several possible mechanisms providing selectivity between receptors and RGS proteins. AtRGS1 is the most extreme example of a mechanism providing receptor-RGS protein selectivity in that both GEF and GAP are two domains on one molecule. Understanding how AtRGS1 regulates the G protein cycle in a ligand dependent manner opens up new possibilities to regulate G protein cycles through drug therapies. Finally, use of Arabidopsis as a model will enable us to solve how cells respond to D-glucose within the context of a multicellular organism.

Public Health Relevance

The rationale for the proposed work is that an understanding of molecular mechanisms used in divergent signaling pathways will yield new drug targets, new ideas for manipulating human signaling pathways, and new tools to engineer human pathways.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM065989-08
Application #
8209077
Study Section
Special Emphasis Panel (ZRG1-CB-N (02))
Program Officer
Gaillard, Shawn R
Project Start
2002-09-01
Project End
2014-12-31
Budget Start
2012-01-01
Budget End
2014-12-31
Support Year
8
Fiscal Year
2012
Total Cost
$335,605
Indirect Cost
$105,281
Name
University of North Carolina Chapel Hill
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Urano, Daisuke; Miura, Kotaro; Wu, Qingyu et al. (2016) Plant Morphology of Heterotrimeric G Protein Mutants. Plant Cell Physiol 57:437-45
Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar et al. (2016) Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex. J Biol Chem 291:13918-25
Tunc-Ozdemir, Meral; Fu, Yan; Jones, Alan M (2016) Cautions in Measuring In Vivo Interactions Using FRET and BiFC in Nicotiana benthamiana. Methods Mol Biol 1363:155-74
Li, Bo; Makino, Shin-Ichi; Beebe, Emily T et al. (2016) Cell-free translation and purification of Arabidopsis thaliana regulator of G signaling 1 protein. Protein Expr Purif 126:33-41
Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L et al. (2016) Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis. Front Plant Sci 7:1255
Urano, Daisuke; Czarnecki, Olaf; Wang, Xiaoping et al. (2015) Arabidopsis receptor of activated C kinase1 phosphorylation by WITH NO LYSINE8 KINASE. Plant Physiol 167:507-16
Huang, Jian-Ping; Tunc-Ozdemir, Meral; Chang, Ying et al. (2015) Cooperative control between AtRGS1 and AtHXK1 in a WD40-repeat protein pathway in Arabidopsis thaliana. Front Plant Sci 6:851
Urano, Daisuke; Dong, Taoran; Bennetzen, Jeffrey L et al. (2015) Adaptive evolution of signaling partners. Mol Biol Evol 32:998-1007
Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan et al. (2015) Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of Arabidopsis. Plant J 81:388-98
Urano, Daisuke; Jackson, David; Jones, Alan M (2015) A G protein alpha null mutation confers prolificacy potential in maize. J Exp Bot 66:4511-5

Showing the most recent 10 out of 76 publications