SCF and the cullin-RING ubiquitin ligases (CRLs) comprise the largest family of ubiquitin ligases in humans. These ~250 enzymes have a major impact on human biology through their ability to specify the half-lives of key regulatory proteins that control processes from basic metabolism to circadian rhythms. In keeping with their broad impact on biology, CRLs also play a major role in human health and cancer chemotherapy. Substrate specificity of CRLs is determined by an interchangeable substrate receptor subunit (SRS). Several CRL SRSs, including Vhl and Fbxw7, are prominent tumor-suppressors, whereas others (Skp2) are proto- oncogenic and yet another, Crbn, is targeted by the drugs that are most commonly used to treat multiple myeloma. Moreover, Nedd8 conjugation, which regulates CRL assembly and activity, is the target of a cancer drug in clinical development. Given their extraordinary impact on human biology and health, CRLs have been studied intensively. However, there is a great deal that we still do not understand about these enzymes. For example, we do not fully understand how exchange of SRSs occurs and we do not know how the exchange process is regulated to ensure that cells possess an appropriate repertoire of CRL complexes. Even very basic questions remain unaddressed, such as: what is the fraction of SRSs that assemble to form CRLs? Do all SRSs assemble with equal efficiency?; do all cells express the same repertoire of CRL complexes?; and so forth. This application proposes development of new assays and methodologies that will enable us to address these fundamental questions. The first two Aims investigate the steady-state structure and dynamics of the cellular network of SCF complexes through development and application of a set of `Selected Reaction Monitoring' (SRM) mass spectrometry assays to identify and quantify all known SCF subunits and regulators.
The third Aim focuses on development and application of new assays to monitor the dynamic association of the SRS exchange factor Cand1 with SCF. FRET and single molecule approaches will explore how Cand1 promotes SRS exchange, and how this process is regulated. Understanding the regulation of CRL assembly will reveal how the network of CRLs is controlled in normal and diseased cells.

Public Health Relevance

The enzymes that are the focus of this grant - cullin-RING ubiquitin ligases (CRLs) - have a deep relationship with human disease and therapy. Mutations in the CRL FBXW7 are one of the most common causes of the adult lymphocytic leukemia, whereas another CRL, CRBN, mediates the anti-cancer activity of the multiple myeloma drugs Revlimid and Pomalyst. We seek to study how CRLs are assembled and controlled, which may help in the development of new therapies directed towards these enzymes.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Membrane Biology and Protein Processing Study Section (MBPP)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
California Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Nguyen, T Van; Lee, J Eugene; Sweredoski, Michael J et al. (2016) Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. Mol Cell 61:809-20
Pulvino, Mary; Chen, Luojing; Oleksyn, David et al. (2015) Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget 6:14796-813
Deshaies, Raymond J (2015) Protein degradation: Prime time for PROTACs. Nat Chem Biol 11:634-5
Honarpour, Narimon; Rose, Christopher M; Brumbaugh, Justin et al. (2014) F-box protein FBXL16 binds PP2A-B55α and regulates differentiation of embryonic stem cells along the FLK1+ lineage. Mol Cell Proteomics 13:780-91
Pierce, Nathan W; Lee, J Eugene; Liu, Xing et al. (2013) Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153:206-15
Sohn, Chang Ho; Lee, J Eugene; Sweredoski, Michael J et al. (2012) Click chemistry facilitates formation of reporter ions and simplified synthesis of amine-reactive multiplexed isobaric tags for protein quantification. J Am Chem Soc 134:2672-80
Emberley, Ethan D; Mosadeghi, Ruzbeh; Deshaies, Raymond J (2012) Deconjugation of Nedd8 from Cul1 is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism. J Biol Chem 287:29679-89
Sohn, Chang Ho; Agnew, Heather D; Lee, J Eugene et al. (2012) Designer reagents for mass spectrometry-based proteomics: clickable cross-linkers for elucidation of protein structures and interactions. Anal Chem 84:2662-9
Saha, Anjanabha; Lewis, Steven; Kleiger, Gary et al. (2011) Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol Cell 42:75-83
Lee, J Eugene; Sweredoski, Michael J; Graham, Robert L J et al. (2011) The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Nedd8 conjugation. Mol Cell Proteomics 10:M110.006460

Showing the most recent 10 out of 16 publications