Ubiquitylation, the covalent attachment of the small protein ubiquitin to other proteins, regulates a host of cellular processes. Protein ubiquitylation has become a synonym for protein degradation, and most of the current research is focused on the role of ubiquitin in targeting proteins for degradation by the 26S proteasome. However, we are beginning to appreciate that a number of proteins are regulated by ubiquitylation in a proteolysis-independent manner. Recent system-wide experiments suggest that only little more than fifty percent of ubiquitylated proteins are efficiently degraded by the proteasome, implying that protein ubiquitylation has widespread signaling functions outside the proteasome pathway. Molecular understanding of these proteolysis-independent ubiquitin signals will be important for basic biomedical research and development of therapeutics targeting the ubiquitin system. Some of the key questions are: Why are some ubiquitylated proteins degraded and others are not? How can ubiquitylation directly affect protein activity? What are the mechanisms of direct protein regulation by ubiquitylation and what are the components mediating regulation? We analyze a system regulated by the cullin-RING ubiquitin ligase complex SCFMet30, which connects metabolic stress to cell cycle regulation. This pathway is particularly suited to probe non-proteolytic signals of ubiquitylation because the same ligase modifies different substrate proteins with the same lysine-48 linked ubiquitin chain, yet some substrates are labeled for degradation while other substrates are regulated in a proteolysis-independent manner. This proposal builds on a plethora of tools available to analyze biochemistry and physiology of this pathway and will address (i) how regulated ubiquitin-binding domains can dictate signal identity and switch between ubiquitin chains signaling for degradation and non-proteolytic regulation (Aim 1);(ii) how a polyubiquitin chain can directly regulate transcription factor activity (Aim 2) and (iii) how ubiquitylation induces active disassembly/remodeling of multisubunit protein complexes to modulate their activities (Aim 3). Ubiquitylation affects many important cellular processes and has been linked to a number of human diseases including cancer, neurodegeneration, and retroviral infection. A contribution of proteolysis-independent ubiquitylation in these diseases is emerging and it will be important to understand the mechanism behind this regulation to design diagnostic tools and treatment strategies. This proposal aims to achieve detailed mechanistic insight into proteolysis-independent ubiquitin signals and to define the concepts of these regulatory ubiquitylation pathways.

Public Health Relevance

Protein modification with ubiquitin controls most if not all functions of living cells and is involved in many human diseases. This project seeks a mechanistic understanding of regulation of protein function by ubiquitylation and regulation of key components of the ubiquitylation machinery. The ubiquitin system is a promising target for therapeutic approaches and findings derived from the proposed studies will therefore be of great significance to human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM066164-12
Application #
8704948
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Gerratana, Barbara
Project Start
2002-08-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
12
Fiscal Year
2014
Total Cost
$428,738
Indirect Cost
$151,238
Name
University of California Irvine
Department
Biochemistry
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Borrego, Stacey L; Fahrmann, Johannes; Datta, Rupsa et al. (2016) Metabolic changes associated with methionine stress sensitivity in MDA-MB-468 breast cancer cells. Cancer Metab 4:9
Yu, Clinton; Yang, Yingying; Wang, Xiaorong et al. (2016) Characterization of Dynamic UbR-Proteasome Subcomplexes by In vivo Cross-linking (X) Assisted Bimolecular Tandem Affinity Purification (XBAP) and Label-free Quantitation. Mol Cell Proteomics 15:2279-92
Mathur, Radhika; Yen, James L; Kaiser, Peter (2015) Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis. PLoS Genet 11:e1005727
Durairaj, Geetha; Kaiser, Peter (2014) The 26S proteasome and initiation of gene transcription. Biomolecules 4:827-47
Lin, Da-Wei; Chung, Benjamin P; Kaiser, Peter (2014) S-adenosylmethionine limitation induces p38 mitogen-activated protein kinase and triggers cell cycle arrest in G1. J Cell Sci 127:50-9
Yen, James L; Flick, Karin; Papagiannis, Christie V et al. (2012) Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97. Mol Cell 48:288-97
Finley, Daniel; Ulrich, Helle D; Sommer, Thomas et al. (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192:319-60
Flick, Karin; Kaiser, Peter (2012) Protein degradation and the stress response. Semin Cell Dev Biol 23:515-22
Booher, Keith; Lin, Da-Wei; Borrego, Stacey L et al. (2012) Downregulation of Cdc6 and pre-replication complexes in response to methionine stress in breast cancer cells. Cell Cycle 11:4414-23
Ouni, Ikram; Flick, Karin; Kaiser, Peter (2011) Ubiquitin and transcription: The SCF/Met4 pathway, a (protein-) complex issue. Transcription 2:135-139

Showing the most recent 10 out of 25 publications