Elongation is the longest part of transcription cycle during which RNA polymerase movement along the template is hindered by many roadblocks DNA-bound proteins, DNA lesions, termination signals, etc. Factors that allow RNA polymerase to bypass these barriers are required for efficient synthesis of long RNAs in all domains of life. Bacterial protein RfaH regulates expression of the cell wall and capsule components, antibiotics, and virulence factors by increasing the RNA polymerase processivity. RfaH action depends on a DNA sequence called ops that mediates RfaH recruitment to RNA polymerase during elongation. In the first granting period, we obtained the X-ray structure of RfaH, identified its binding site on transcription complex, characterized RfaH effects at different regulatory sites and on enzymes with altered elongation properties, and showed that RfaH acts by preventing pausing rather than by increasing the rate of nucleotide addition. This mechanism is likely fundamentally conserved in other antiterminators. In this proposal, we will use a combination of biochemical, genetic, and structural approaches to address several aspects of RfaH action. The first goal of this project is to study the mechanism of RfaH action. We will use a combination of genetic, biochemical, and structural analyses to dissect interactions of the N-terminal domain (which is sufficient for RfaH anti-pausing activity) with the transcription elongation complex and to elucidate the confomational changes triggered by these interactions. The second goal of this project is to elucidate the role of the ops element in recruitment of RfaH. We propose that ops not only establishes base-specific contacts with RfaH but also induces a specialized scrunched DNA conformation that is required for RfaH binding. The third goal of this project is to test if the "modulatory" C-terminal domain changes its structure after RfaH recruitment and is involved in cross-talk with the translation apparatus. The fourth goal of this project is to characterize the RfaH regulon by identifying the RfaH-associated proteins and genes by in vivo crosslinking and chromatin immuno-precipitation, respectively. We will also analyze selected RfaH operons by quantitative RT PCR.

Public Health Relevance

This project aims to elucidate the mechanism by which transcription factor RfaH regulates gene expression. The rfaH genes are present in human, insect, and plant pathogens;moreover, RfaH is essential for virulence in animal models. These studies will reveal the mechanism of RfaH action, elucidate the unique role of its DNA target site in transcriptional control, and identify cellular RfaH targets which may be uncharacterized virulence factors.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Sledjeski, Darren D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Arts and Sciences
United States
Zip Code
Sreenivasan, Raashi; Heitkamp, Sara; Chhabra, Munish et al. (2016) Fluorescence Resonance Energy Transfer Characterization of DNA Wrapping in Closed and Open Escherichia coli RNA Polymerase-λP(R) Promoter Complexes. Biochemistry 55:2174-86
Elgamal, Sara; Artsimovitch, Irina; Ibba, Michael (2016) Maintenance of Transcription-Translation Coupling by Elongation Factor P. MBio 7:
Belogurov, Georgiy A; Artsimovitch, Irina (2015) Regulation of Transcript Elongation. Annu Rev Microbiol 69:49-69
Artsimovitch, Irina; Santangelo, Thomas J (2015) Preface. Bacterial transcriptional control. Methods Mol Biol 1276:v
Artsimovitch, Irina; Belogurov, Georgi A (2015) Creative Math of RNA Polymerase III Termination: Sense Plus Antisense Makes More Sense. Mol Cell 58:974-6
Furman, Ran; Danhart, Eric M; NandyMazumdar, Monali et al. (2015) pH dependence of the stress regulator DksA. PLoS One 10:e0120746
Ruff, Emily F; Drennan, Amanda C; Capp, Michael W et al. (2015) E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure. J Mol Biol 427:2435-50
Ruff, Emily F; Record Jr, M Thomas; Artsimovitch, Irina (2015) Initial events in bacterial transcription initiation. Biomolecules 5:1035-62
Svetlov, Vladimir; Artsimovitch, Irina (2015) Purification of bacterial RNA polymerase: tools and protocols. Methods Mol Biol 1276:13-29
NandyMazumdar, Monali; Artsimovitch, Irina (2015) Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins - Shifting shapes and paradigms. Bioessays 37:324-34

Showing the most recent 10 out of 51 publications