Inflammatory signaling by macrophages in response to pathogens or tissue injury is the key determinant of the pathology and pathogenesis of infectious and non- infectious disease. Signaling is initiated by Toll-like receptors (TLRs) and results in complex gene expression programs. The transcription factor NF?B controls the inflammatory portion of the program, and understanding its regulation in response to TLR signaling is the goal of this project. During the previous funding period, we have used combined experimental / computational modeling approach to gain a predictive understanding of NF?B in response to specific I?B kinase (IKK) activity profiles, and in response to the cytokine TNF and ribotoxic stress agents. However, preliminary results suggest that TLR signaling cannot be accounted for by a single kinase input into the NF?B signaling module, but that multiple regulatory mechanisms converge to regulate NF?B. Here we will undertake quantitative experimental studies in conjunction with computational modeling to produce a predictive understanding of the regulation of the key inflammatory regulator NF?B and its associated gene expression programs in response to a variety of TLR agonists.
Three specific aims focus on specific mechanisms that critically modulate NF?B activity in macrophages in response to specific input signals;
the fourth aim i ntegrates these to produce a comprehensive predictive model of TLR signaling to NF?B. We will demonstrate its utility as a research tool and will provide it to the broader community.

Public Health Relevance

Inflammatory signaling by macrophages in response to pathogens or tissue injury is the key determinant of the pathology and pathogenesis of infectious and non- infectious disease. Here we will undertake quantitative experimental studies in conjunction with computational modeling to produce a predictive understanding and predictive research tool of the regulatory mechanisms controlling inflammatory responses.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM071573-09
Application #
8457116
Study Section
Innate Immunity and Inflammation Study Section (III)
Program Officer
Gaillard, Shawn R
Project Start
2004-07-01
Project End
2014-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
9
Fiscal Year
2013
Total Cost
$255,445
Indirect Cost
$83,894
Name
University of California San Diego
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hoffmann, Alexander (2016) Immune Response Signaling: Combinatorial and Dynamic Control. Trends Immunol 37:570-2
Xu, Jinjin; Zhou, Lei; Ji, Lei et al. (2016) The REGγ-proteasome forms a regulatory circuit with IκBɛ and NFκB in experimental colitis. Nat Commun 7:10761
Almaden, Jonathan V; Liu, Yi C; Yang, Edward et al. (2016) B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel. Blood 127:1276-86
Ourthiague, Diana R; Birnbaum, Harry; Ortenlöf, Niklas et al. (2015) Limited specificity of IRF3 and ISGF3 in the transcriptional innate-immune response to double-stranded RNA. J Leukoc Biol 98:119-28
Cheng, Zhang; Taylor, Brooks; Ourthiague, Diana R et al. (2015) Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation. Sci Signal 8:ra69
Fagerlund, Riku; Behar, Marcelo; Fortmann, Karen T et al. (2015) Anatomy of a negative feedback loop: the case of IκBα. J R Soc Interface 12:0262
Shokhirev, Maxim N; Almaden, Jonathan; Davis-Turak, Jeremy et al. (2015) A multi-scale approach reveals that NF-κB cRel enforces a B-cell decision to divide. Mol Syst Biol 11:783
Fortmann, Karen T; Lewis, Russell D; Ngo, Kim A et al. (2015) A Regulated, Ubiquitin-Independent Degron in IκBα. J Mol Biol 427:2748-56
Alves, Bryce N; Tsui, Rachel; Almaden, Jonathan et al. (2014) IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J Immunol 192:3121-32
Caldwell, Andrew B; Cheng, Zhang; Vargas, Jesse D et al. (2014) Network dynamics determine the autocrine and paracrine signaling functions of TNF. Genes Dev 28:2120-33

Showing the most recent 10 out of 36 publications