Activation of transcription is the ultimate endpoint for many signal transduction and developmental pathways, and understanding the mechanism of activation is a key to understanding gene regulation. From previous studies, it is clear that disruption of normal gene regulation by mutations in gene- specific transcription activators and coactivators can lead to cancer and other diseases. The broad long- term objectives of this proposal are to determine the mechanisms used by gene-specific activators and coactivators to regulate RNA polymerase II transcription. The proposed work will provide a basis for understanding gene regulation in normal and diseased states at the molecular level.
The specific aims of this work utilize biochemical, structural, and molecular genetic methods to examine the direct targets of two activation domains and two coactivators. We will examine the structure of several acidic activator-coactivator complexes to understand how activators specifically recognize their targets, common principals of activator-target recognition and, more generally, the function of intrinsically disordered proteins. We will examine the interaction of the SAGA coactivator with TBP (TATA binding protein) and how this interaction is regulated by acetylation. Using a unique set of crosslinking reagents, we will examine the direct targets of the Mediator coactivator complex within the transcription machinery. In all cases, we will use yeast molecular genetics to test the functional significance of our biochemical results. Combined, our results will lead to a molecular model for how activators recognize their coactivator targets and how coactivators stimulate gene expression by direct interaction with the transcription machinery.

Public Health Relevance

Project Narrative The objective of this research is to understand the mechanism and regulation of transcription, the process of mRNA synthesis. Regulation of transcription is one of the key steps in control of cell growth, differentiation, and development, and defects in transcription directly contribute to many human illnesses. Understanding the mechanism of transcription and its regulation will form the basis for understanding the molecular defects in transcription disorders leading to many types of cancer, as well as heart disease, neurological disorders, and birth defects.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Sledjeski, Darren D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Bruzzone, Maria Jessica; Grünberg, Sebastian; Kubik, Slawomir et al. (2018) Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes. Genes Dev 32:1252-1265
Pacheco, Derek; Warfield, Linda; Brajcich, Michelle et al. (2018) Transcription Activation Domains of the Yeast Factors Met4 and Ino2: Tandem Activation Domains with Properties Similar to the Yeast Gcn4 Activator. Mol Cell Biol 38:
Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda et al. (2018) Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex. Cell Rep 22:3251-3264
Grünberg, Sebastian; Zentner, Gabriel E (2017) Genome-wide Mapping of Protein-DNA Interactions with ChEC-seq in Saccharomyces cerevisiae. J Vis Exp :
Grünberg, Sebastian; Zentner, Gabriel E (2017) Genome-wide characterization of Mediator recruitment, function, and regulation. Transcription 8:169-174
Baptista, Tiago; Grünberg, Sebastian; Minoungou, Nadège et al. (2017) SAGA Is a General Cofactor for RNA Polymerase II Transcription. Mol Cell 68:130-143.e5
Grünberg, Sebastian; Henikoff, Steven; Hahn, Steven et al. (2016) Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters. EMBO J 35:2435-2446
Warfield, Linda; Tuttle, Lisa M; Pacheco, Derek et al. (2014) A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc Natl Acad Sci U S A 111:E3506-13
Han, Yan; Luo, Jie; Ranish, Jeffrey et al. (2014) Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 33:2534-46
Hahn, Steven (2014) Ellis Englesberg and the discovery of positive control in gene regulation. Genetics 198:455-60

Showing the most recent 10 out of 19 publications