The ability to detect and respond to spatial gradients of signaling molecules is fundamental for many biological processes in eukaryotic cells, such as differentiation, migration and morphogenesis. While much is known about the proteins that are required for signal transduction and gradient sensing, the precise mechanism by which they interact to transmit information about the environment and create internal gradients of protein activity remain unclear. This proposal seeks to establish the role of receptor endocytosis in modulating signaling activity and gradient sensing in the mating response of Saccharomyces cerevisiae (yeast). Yeast undergo a developmental decision based on the concentration of pheromone. At high pheromone levels, they growth arrest and generate a mating projection ("shmoo" morphology). At intermediate concentrations they elongate in the direction of an increasing pheromone gradient (chemotrophic growth). This decision requires that the mating response pathway transmit quantitative information about the external pheromone concentration. Through a combination of mathematical modeling and experimental analysis we accumulated strong evidence to support the idea that information about pheromone concentration is transmitted not as the amplitude of signal activity but as signal duration. One goal of this proposal is to test the hypothesis that receptor endocytosis plays an important role in this "dose-to-duration" conversion. Several experimental and theoretical investigations have suggested that receptor endocytosis is important for establishing cell polarity. Recent theoretical investigations also have suggested that receptor endocytosis increase cell's ability to detect external gradients of signaling molecules. A second goal is to test the hypothesis that receptor endocytosis increases yeast's ability to detect pheromone gradients and track gradients that change in time.
The specific aims are:
Aim 1. Characterize the role of receptor endocytosis in modulating signal activity.
This aim tests the hypothesis that receptor endocytosis provides a mechanism for dose-to-duration encoding. Mathematical modeling is combined with experimental approaches to compare signal activity and responses in wild-type and defined mutant strains of yeast.
Aim 2. Characterize the role of receptor endocytosis in gradient sensing.
This aim uses mathematical and experimental approaches to test the hypothesis that receptor endocytosis increases yeast's ability to detect a pheromone gradient.
Aim 3. Characterize yeast's ability to respond to changing external conditions.
This aim tests the hypothesis that receptor endocytosis allows yeast to track time-dependent pheromone gradients. Our recent development of a microfluidics device that allows the direction of a gradient to be modulated in time is a critical feature of our experimental design for investigating yeast's ability to track changing environmental conditions.

Public Health Relevance

The ability to detect and respond to spatial gradients of signaling molecules is fundamental for many biological processes in eukaryotic cells, such as differentiation, migration and morphogenesis. This project seeks to combine computational approaches with experimental analysis to develop predictive models of signaling and gradient sensing in yeast. Because yeast has long served as a prototype for hormone, neurotransmitter and sensory responses in humans, the results of these investigations may ultimately lead to novel strategies for treating human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM079271-07S1
Application #
8587635
Study Section
Program Officer
Lyster, Peter
Project Start
2013-03-01
Project End
2014-08-31
Budget Start
2013-03-01
Budget End
2013-08-31
Support Year
7
Fiscal Year
2013
Total Cost
$38,268
Indirect Cost
$13,092
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Colaneri, Alejandro C; Tunc-Ozdemir, Meral; Huang, Jian Ping et al. (2014) Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol 14:129
Allen, R J; Tsygankov, D; Zawistowski, J S et al. (2014) Automated line scan analysis to quantify biosensor activity at the cell edge. Methods 66:162-7
Tsygankov, Denis; Bilancia, Colleen G; Vitriol, Eric A et al. (2014) CellGeo: a computational platform for the analysis of shape changes in cells with complex geometries. J Cell Biol 204:443-60
Fu, Yan; Lim, Sungmin; Urano, Daisuke et al. (2014) Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell 156:1084-95
Karginov, Andrei V; Tsygankov, Denis; Berginski, Matthew et al. (2014) Dissecting motility signaling through activation of specific Src-effector complexes. Nat Chem Biol 10:286-90
Chu, Pei-Hsuan; Tsygankov, Denis; Berginski, Matthew E et al. (2014) Engineered kinase activation reveals unique morphodynamic phenotypes and associated trafficking for Src family isoforms. Proc Natl Acad Sci U S A 111:12420-5
Tsygankov, Denis; Chu, Pei-Hsuan; Chen, Hsin et al. (2014) User-friendly tools for quantifying the dynamics of cellular morphology and intracellular protein clusters. Methods Cell Biol 123:409-27
Dixit, Gauri; Kelley, Joshua B; Houser, John R et al. (2014) Cellular noise suppression by the regulator of G protein signaling Sst2. Mol Cell 55:85-96
Bilancia, Colleen G; Winkelman, Jonathan D; Tsygankov, Denis et al. (2014) Enabled negatively regulates diaphanous-driven actin dynamics in vitro and in vivo. Dev Cell 28:394-408
Dyer, Jayme M; Savage, Natasha S; Jin, Meng et al. (2013) Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr Biol 23:32-41

Showing the most recent 10 out of 23 publications