The ability to sequence and identify proteins, map their sites of post-translational modification (PTM), and assess their abundances is central to modern biology. Mass spectrometry (MS) is the gold standard technology by which this information is obtained. Serving as the centerpiece, tandem MS (MS/MS) is a principal component. Electron transfer dissociation (ETD), a relatively new MS/MS dissociation method, has generated significant excitement for its compatibility with previously intractable peptide/protein classes. Five years ago m/z range, mass accuracy, and mass resolution considerably restricted the application of ETD. Our initial RO1 proposal successfully eliminated this limitation by coupling ETD to the orbitrap mass analyzer. The resulting system routinely analyzes peptides and proteins, with and without labile PTMs, with a high-fidelity readout (orbitrap). As a result, it realized many of our anticipated outcomes and created numerous unforeseen opportunities. Just in the PI's laboratory, the latter set includes data-dependent selection of dissociation method (i.e., Decision Tree), discovery of the unique chemical compositions of z-type ions, internal spectral calibration using ETD reagents, activated-ion ETD, and several biological applications. By 2008, the commercial implementation of our technology began to reach researchers across the globe-nearly 300 to date-enabling access to numerous previously intractable problems such as mapping Arg methylation sites, increasing coverage of low molecular weight proteins, providing unambiguous PTM site assignment, and screening glycopeptide libraries, among many others. We detail two new aims that build upon the high impact results of our initial funding period.
Aim 1, how do we broaden the utility of ETD for biomedical research? Aim 2, what is the role of gas- phase purification in quantitative proteomics? We continue with a balance of instrumentation, method, informatic, and applied projects constructed upon the widely used ETD-orbitrap platform we described 3.5 years ago.

Public Health Relevance

Cutting edge MS based technology, Electron transfer dissociation (ETD), continues to be developed. This new MS/MS dissociation method enables previously intractable peptide/protein classes to be sequenced and identified, have their sites of post-translational modification (PTM) mapped, and assess their abundances. This is central to modern biology and has relevance for research ranging from human disease to evolution.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM080148-08
Application #
8625765
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Edmonds, Charles G
Project Start
2007-03-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Madison
State
WI
Country
United States
Zip Code
53715
Wilkerson, Emily M; Johansson, Mats W; Hebert, Alexander S et al. (2016) The Peripheral Blood Eosinophil Proteome. J Proteome Res 15:1524-33
Lera, Robert F; Potts, Gregory K; Suzuki, Aussie et al. (2016) Decoding Polo-like kinase 1 signaling along the kinetochore-centromere axis. Nat Chem Biol 12:411-8
Riley, Nicholas M; Mullen, Christopher; Weisbrod, Chad R et al. (2016) Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation. J Am Soc Mass Spectrom 27:520-31
Horton, Julie L; Martin, Ola J; Lai, Ling et al. (2016) Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 2:
Potts, Gregory K; Voigt, Emily A; Bailey, Derek J et al. (2016) Neucode Labels for Multiplexed, Absolute Protein Quantification. Anal Chem 88:3295-303
Riley, Nicholas M; Coon, Joshua J (2016) Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Anal Chem 88:74-94
Rhoads, Timothy W; Prasad, Aman; Kwiecien, Nicholas W et al. (2015) NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans. Mol Cell Proteomics 14:2922-35
Ledvina, Aaron R; Coon, Joshua J; Tureček, František (2015) Competitive Hydrogen Atom Migrations Accompanying Cascade Dissociations of Peptide Cation-Radicals of the z (+•) Type. Int J Mass Spectrom 377:44-53
Mondal, Arindam; Potts, Gregory K; Dawson, Anthony R et al. (2015) Phosphorylation at the homotypic interface regulates nucleoprotein oligomerization and assembly of the influenza virus replication machinery. PLoS Pathog 11:e1004826
Richards, Alicia L; Hebert, Alexander S; Ulbrich, Arne et al. (2015) One-hour proteome analysis in yeast. Nat Protoc 10:701-14

Showing the most recent 10 out of 96 publications