Many therapeutic agents in use today are small molecule natural products produced by bacteria. While their use in clinical settings has been a boon for medicine, the functions that these molecules serve for the producing organisms are not well understood. This gap in knowledge may hinder efforts at discovering new compounds that may be developed into effective therapeutics in the future. Initially thought to serve primarily as agents of mutual destruction, we now recognize that many microbial products serve as signals that microbes sense in order to adapt to their environment. This ecological perspective of the role of natural products led to the development of our central hypothesis: Bacteria synthesize and secrete a large number of small signaling molecules that affect the physiology of other microbes that occupy the same habitat. This general hypothesis drives our proposed research. But the lines of experimentation we follow are also discovery-driven;over the past few years we have discovered new small molecules that mediate diverse interspecies interactions in the microbial world. In the initial phase of this project, we validated the main concept that studying the chemical biology of interspecies interactions can lead to the discovery of new small molecule natural products. As before, we will continue to follow approaches that meld the disciplines of microbial ecology, physiology, and genetics, with enzymology, bioinformatics, and small molecule chemistry. We now aim to take this multidisciplinary approach to the next level by raising the scale of our screens and increasing the throughput of our compound characterization. Specifically, we will pursue research along three directions aims: (i) We will carry out high-throughput, broad spectrum screens to discover molecules mediating interspecies interactions. (ii) We will investigate specific ecological microbial interactions to discover molecules that mediate them. (iii) We will carry out pair-wise co-cultures of actinomycete strains whose genomes have been sequenced to carry out genome assisted compound discovery. Throughout our analyses, we will use diverse methodologies ranging from Nanostring assays of transcriptional effects to high-throughput liquid chromatography/mass spectrometry and imaging mass spectrometry in order to characterize the nature of the interactions and to define the molecules involved.

Public Health Relevance

The development of antibiotics as therapeutics is one of the key accomplishments of modern medicine. Penicillin (the first antibiotic to be intensively used) and many other antibiotics, many anti-cancer agents, and many immunosuppressants, are molecules produced by microorganisms, they are thus called small molecule natural products. Unfortunately, the appearance of antibiotic resistant bacteria has diminished the effectiveness of existing antibiotics and there is always a great need to discover more of these molecules;the proposed research aims at discovering new such molecules by studying the effects they have in mediating interactions among microbes.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
Schools of Medicine
United States
Zip Code
Seyedsayamdost, Mohammad R; Wang, Rurun; Kolter, Roberto et al. (2014) Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules. J Am Chem Soc 136:15150-3
Lambert, St├ęphany; Traxler, Matthew F; Craig, Matthias et al. (2014) Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics 6:1390-9
Traxler, Matthew F; Watrous, Jeramie D; Alexandrov, Theodore et al. (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4:
Romero, Diego; Sanabria-Valentin, Edgardo; Vlamakis, Hera et al. (2013) Biofilm inhibitors that target amyloid proteins. Chem Biol 20:102-10
Bottcher, Thomas; Kolodkin-Gal, Ilana; Kolter, Roberto et al. (2013) Synthesis and activity of biomimetic biofilm disruptors. J Am Chem Soc 135:2927-30
Leiman, Sara A; May, Janine M; Lebar, Matthew D et al. (2013) D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol 195:5391-5
Kolodkin-Gal, Ilana; Cao, Shugeng; Chai, Liraz et al. (2012) A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149:684-92
Seyedsayamdost, Mohammad R; Traxler, Matthew F; Zheng, Shao-Liang et al. (2011) Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4. J Am Chem Soc 133:11434-7
Seyedsayamdost, Mohammad R; Case, Rebecca J; Kolter, Roberto et al. (2011) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3:331-5
Seyedsayamdost, Mohammad R; Carr, Gavin; Kolter, Roberto et al. (2011) Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 133:18343-9

Showing the most recent 10 out of 16 publications