Unactivated C-H bonds are ubiquitous in biologically active compounds as well as intermediates in organic synthesis. Development of catalytic methods to functionalize these strong bonds selectively will offer unprecedented and efficient tools for making C-C and C-heteroatom bonds in organic synthesis and medicinal chemistry. A number of promising catalytic reactions have been developed using directed C-H activation as a key strategy. These reactions typically use pre-installed nitrogen-containing auxiliaries as directing groups via binding to metal catalysts. Considering the broad applications of auxiliaries in synthesis, auxiliaries developed for C-H insertion are not yet practical due to multiple steps and harsh conditions involved in their installation and removal. To overcome these drawbacks, we propose to develop catalytic C-H activation reactions of simple and synthetically useful carboxylic acids and amides at the 2-positions. These reactions are also applicable to simple amine derivatives. We will exploit these reactivities to develop an array of C-H activation/C-C coupling reactions using practical coupling partners such as organoboron reagents and olefins. To improve the practicality of C-H activation reactions, we propose to develop mild conditions (50-80?C and pH = 4-12) that allow the use of O2 or air as the stoichiometric oxidant. These advantages will be exploited to site-selectively functionalize biologically active natural products including dehydroabietic acid, podocarpic acid and amino acids. The structurally diversified dehydroabietic acid derivatives will be tested for potentially improved biological activity as BK channel openers. Lastly, we have also discovered an effective ligand to achieve the first Pd(II)-catalyzed enantioselective coupling of sp2 and sp3 C-H bonds with organoboronic acids which will find widespread use in synthesis and medicinal chemistry.

Public Health Relevance

The C-H activation/C-C coupling reactions described in this proposal will expedite the drug discovery process by providing unprecedented routes to access biologically active compounds. The enantioselective alkylation of sp2 and sp3 C-H bonds will provide new methods for the preparation of medicinally relevant chiral molecules. Research plans for applications of these reactions in medicinal chemistry are also outlined.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Hagan, Ann A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Jain, Pankaj; Verma, Pritha; Xia, Guoqin et al. (2017) Enantioselective amine ?-functionalization via palladium-catalysed C-H arylation of thioamides. Nat Chem 9:140-144
Chen, Gang; Zhuang, Zhe; Li, Gen-Cheng et al. (2017) Ligand-Enabled ?-C-H Arylation of ?-Amino Acids Without Installing Exogenous Directing Groups. Angew Chem Int Ed Engl 56:1506-1509
Zhu, Ru-Yi; Liu, Luo-Yan; Park, Han Seul et al. (2017) Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via ?-C(sp3)-H Activation. J Am Chem Soc 139:16080-16083
Tran, Anh T; Yu, Jin-Quan (2017) Practical Alkoxythiocarbonyl Auxiliaries for Iridium(I)-Catalyzed C-H Alkylation of Azacycles. Angew Chem Int Ed Engl 56:10530-10534
Yang, Yun-Fang; Hong, Xin; Yu, Jin-Quan et al. (2017) Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C-H Activation of Aryl and Alkyl Groups. Acc Chem Res 50:2853-2860
Zhu, Ru-Yi; Saint-Denis, Tyler G; Shao, Ying et al. (2017) Ligand-Enabled Pd(II)-Catalyzed Bromination and Iodination of C(sp3)-H Bonds. J Am Chem Soc 139:5724-5727
He, Jian; Wasa, Masayuki; Chan, Kelvin S L et al. (2017) Palladium-Catalyzed Transformations of Alkyl C-H Bonds. Chem Rev 117:8754-8786
Fu, Haiyan; Shen, Peng-Xiang; He, Jian et al. (2017) Ligand-Enabled Alkynylation of C(sp3 )-H Bonds with Palladium(II) Catalysts. Angew Chem Int Ed Engl 56:1873-1876
Liu, Tao; Qiao, Jennifer X; Poss, Michael A et al. (2017) Palladium(II)-Catalyzed Site-Selective C(sp3 )-H Alkynylation of Oligopeptides: A Linchpin Approach for Oligopeptide-Drug Conjugation. Angew Chem Int Ed Engl 56:10924-10927
Wu, Qing-Feng; Shen, Peng-Xiang; He, Jian et al. (2017) Formation of ?-chiral centers by asymmetric ?-C(sp3)-H arylation, alkenylation, and alkynylation. Science 355:499-503

Showing the most recent 10 out of 71 publications