The long-term goal of this grant is to elucidate the molecules and mechanisms that sustain the accuracy of chromosome segregation. Such information is crucial for maintaining and improving human health, as inaccurate segregation causes aneuploidy and contributes to disorders like Down Syndrome and cancer. To facilitate the dissection of this and other complex biological processes, our laboratory has developed novel methods for precisely deleting or modifying genes in human somatic cells via homologous recombination. By combining these methods with high-resolution microscopy and chemical genetics, we have identified novel functions and regulation of the protein kinases Plk1 (Polo-like kinase 1) and Mps1, which are essential regulators of mitosis and cell division in all eukaryotes. Based on our preliminary findings, three aims are proposed for the next grant period: (1) to elucidate the effectors and mechanism of Plk1-dependent centrosome maturation;(2) to test Mps1's contribution to the cytosolic and kinetochore-dependent branches of the spindle assembly checkpoint (SAC);and (3) to identify the substrates of Mps1 that mediate the kinase's functions in SAC enforcement and chromosome bi-orientation. These studies will illuminate the mechanisms that regulate and sustain the high fidelity of chromosome segregation in humans. Such information is crucial for understanding how normal cells avoid aneuploidy and its adverse impacts on human health, and for developing novel treatments that specifically target aneuploidy in the context of disease.

Public Health Relevance

Errors in chromosome segregation result in aneuploidy, an abnormal genetic configuration strongly associated with human disease, including Down Syndrome and cancer. There is a strong need to elucidate how chromosome segregation is controlled at the molecular level, both to reduce the likelihood of aneuploidy in normal cells, and to exploit aneuploidy as an "Achilles heel" in cancer cells. During the next grant period we focus specifically on the roles of two master kinases - Plk1 and Mps1 - in human chromosome segregation. As these kinases are overproduced in tumors and being evaluated as targets for anti-neoplastic therapy, our studies have strong relevance to ongoing efforts to expand and improve the cancer pharmacopeia.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Hamlet, Michelle R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Rodriguez-Bravo, Veronica; Maciejowski, John; Corona, Jennifer et al. (2014) Nuclear pores protect genome integrity by assembling a premitotic and Mad1-dependent anaphase inhibitor. Cell 156:1017-31
Oppermann, Felix S; Grundner-Culemann, Kathrin; Kumar, Chanchal et al. (2012) Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets. Mol Cell Proteomics 11:O111.012351
Burkard, Mark E; Santamaria, Anna; Jallepalli, Prasad V (2012) Enabling and disabling polo-like kinase 1 inhibition through chemical genetics. ACS Chem Biol 7:978-81
Sherwood, Rebecca; Takahashi, Tatsuro S; Jallepalli, Prasad V (2010) Sister acts: coordinating DNA replication and cohesion establishment. Genes Dev 24:2723-31
Maciejowski, John; George, Kelly A; Terret, Marie-Emilie et al. (2010) Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 190:89-100