Protein posttranslational modifications are important for regulating protein function and are involved in numerous biological processes. Protein acetylation, controlled by acetyltransferases and deacetylases, are known to play important roles in regulation of transcription and metabolism. The acetyl donor, acetyl-CoA, is a metabolic intermediate in cells. Recently, our laboratory discovered several novel acyl lysine modifications that are structurally very different from acetyl. We have shown that these new acyl lysine modifications occur in mammalian cells and there are dedicated enzymes (sirtuins) that can remove them efficiently. These new acyl lysine modifications, like acetylation, also come from common metabolic intermediates, suggesting that these modifications may be a mechanism of sensing metabolism to regulate protein function. Studying these new modifications will allow us to better understand the chemistry of biological systems. The study has the potential to provide answers to a number of puzzles in the protein acetylation field, such as the lack of enzymatic activity for about half of the protein deacetylases. Because these acyl lysine modifications have not been studied before, no tools are available to investigate them. The existence of multiple acyl lysine modifications also adds a layer of technical complexity to the study of these modifications. The goal of this proposal is to develop new and better methods to detect and quantify these modifications and then use these methods to investigate the occurrence, regulation, and function of these modifications.

Public Health Relevance

This proposal aims to develop chemical and biochemical tools to study novel protein acyl lysine modifications. These acyl lysine modifications are recently discovered in our laboratory and are structurally different from lysine acetylation, which is known to control numerous biological pathways and considered important drug target. The proposed study will provide fundamental understandings of the chemistry of metabolism and protein regulation that will eventually facilitate the development of new therapeutics to treat human diseases.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01GM098596-03
Application #
8720017
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Ithaca
State
NY
Country
United States
Zip Code
14850
He, Bin; Hu, Jing; Zhang, Xiaoyu et al. (2014) Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org Biomol Chem 12:7498-502