We will propose a method to detect changes in intramolecular structure or intermolecular organization based on orientation imaging of fluorescent single molecules. We will develop robust instrumentation for polarized fluorescence imaging exhibiting the speed and sensitivity required to monitor 3D angular changes of individual fluorophores that are rigidly connected to proteins of interest. While developing the optical arrangement and required acquisition and processing algorithms, we will use the system to monitor the organization of septin molecules in a filamentous fungus, Ashbya gossypii and in budding yeast. These model systems are used because they are highly amenable to imaging, molecular genetic and biochemical manipulations and the septins in these cells are well characterized. The septins are a highly conserved component of the cytoskeleton that are critical for cytokinesis and intracellular compartmentalization. Important insights have been gained about the steady state organization of septins using polarized fluorescence imaging approaches but never at the single molecule level.
As Aim 1 we will develop instrumentation and probe design for imaging the 3D orientation imaging of fluorescent single molecules.
For Aim 2 we will analyze the mechanisms of septin assembly and reorganization in vitro and in living cells.
For Aim 3, we will reveal the mechanisms of diffusion barrier function of septins in cellular membrane. In practice, we anticipate continuous back-and-forth transitions between those methods development and biological applications.

Public Health Relevance

Primary objective of the development of our fluorescent single molecule imaging is to reveal the mechanisms of molecular assembly and functions of septins in living cells. Septin functions are diverse and range from acting as scaffolds to concentrate signaling proteins to forming diffusion barriers that segregate membranes into discrete domains. Misregulation of septins has been implicated in a wide range of neuropathies including Alzheimer's, Parkinsons and Huntington's disease, autism as well as in various cancers. Understanding normal septin organization and assembly is essential to understand how their misfunction promotes disease.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Deatherage, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Marine Biological Laboratory
Woods Hole
United States
Zip Code
Mehta, Shalin B; McQuilken, Molly; La Riviere, Patrick J et al. (2016) Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci U S A 113:E6352-E6361
Khan, Anum; McQuilken, Molly; Gladfelter, Amy S (2015) Septins and Generation of Asymmetries in Fungal Cells. Annu Rev Microbiol 69:487-503
Koike-Tani, Maki; Tani, Tomomi; Mehta, Shalin B et al. (2015) Polarized light microscopy in reproductive and developmental biology. Mol Reprod Dev 82:548-62
Kaplan, Charlotte; Jing, Bo; Winterflood, Christian M et al. (2015) Absolute Arrangement of Subunits in Cytoskeletal Septin Filaments in Cells Measured by Fluorescence Microscopy. Nano Lett 15:3859-64
McQuilken, Molly; Mehta, Shalin B; Verma, Amitabh et al. (2015) Polarized Fluorescence Microscopy to Study Cytoskeleton Assembly and Organization in Live Cells. Curr Protoc Cell Biol 67:4.29.1-13
Bridges, Andrew A; Zhang, Huaiying; Mehta, Shalin B et al. (2014) Septin assemblies form by diffusion-driven annealing on membranes. Proc Natl Acad Sci U S A 111:2146-51