This project aims to develop and apply new differential interference contrast and polarized light microscope techniques, both of whose contrast is independent of specimen orientation. During the first grant period we built an orientation-independent differential interference contrast (OI-DIC) microscope, which rapidly changes shear directions without any mechanically moved components. The OI-DIC system receives the quantitative refractive index gradient and phase (dry mass) images with the highest quality that cannot be achieved with any other optical microscope. We will design and built the improved OI-DIC with an optical stack consisting of DIC prisms and high quality liquid crystal (LC) cells. Because of the small total thickness, this stack can be placed into an existing DIC slot of a regular microscope. The new OI-DIC system will operate in both the visible and near- IR spectral regions, thus opening up the possibility of identifying structures with different wavelength- dependence of refractive indices. We will develop a new orientation-independent polarization microscope (LC- polscope), which employs only one LC cell. The DIC and LC-polscope devices combined into one unit will allow rapid switching between the two modes without the need to move any optical components so that both images can be captured nearly simultaneously and without misalignment. The new system will yield two complementary images of thin optical section of the specimen: distribution of refractive index gradient or dry mass and distribution of birefringence due to structural or intrinsic anisotropy. For example, in a live dividing cell, the OI-DIC image will clearly show the chromosomes while the polscope image will quantitatively depict the distribution of the birefringent microtubules in the spindle. We will develop a method for reconstruction the 3D distributions of refractive index of specimen regions. Such capabilities will be especially important for studying live cells in division. With the new approach, one will be able to determine the dry mass of chromosomes before division and observe its change during the division process. One could also count the number of condensed chromosomes without spreading or killing the cell. We will design and fabricate new video-enhanced polychromatic polscope, capable of video-rate or faster image acquisition. The polychromatic polscope will be able to provide sharp images of fast moving birefringent organelles, rapid birefringence propagation caused be nerve impulses, etc.

Public Health Relevance

In order to gain improved insight into the dynamic behavior and molecular events underlying healthy and pathologically impaired tissues, we will develop new optics and processing software for light microscopes that allow speedy capture of informative images without the need to destroy or stain the cells. The new systems will make cell organelles, including their changes and movement more visible, allow measurement of their dry mass, and concurrently reveal changes in molecular assembly and alignment, all non-invasively without perturbing state of the cells.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-M (02))
Program Officer
Deatherage, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Marine Biological Laboratory
Woods Hole
United States
Zip Code
Malamy, J E; Shribak, M (2018) An orientation-independent DIC microscope allows high resolution imaging of epithelial cell migration and wound healing in a cnidarian model. J Microsc 270:290-301
Shribak, Michael; Larkin, Kieran G; Biggs, David (2017) Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy. J Biomed Opt 22:16006
Imai, Ryosuke; Nozaki, Tadasu; Tani, Tomomi et al. (2017) Density imaging of heterochromatin in live cells using orientation-independent-DIC microscopy. Mol Biol Cell 28:3349-3359
Tani, Tomomi; Shribak, Michael; Oldenbourg, Rudolf (2016) Living Cells and Dynamic Molecules Observed with the Polarized Light Microscope: the Legacy of Shinya Inoué. Biol Bull 231:85-95
Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F et al. (2015) A mechanical microcompressor for high resolution imaging of motile specimens. Exp Cell Res 337:249-56
Shribak, Michael (2015) Polychromatic polarization microscope: bringing colors to a colorless world. Sci Rep 5:17340
Shribak, Michael (2014) Compact Orientation-Independent Differential Interference Contrast (OI-DIC) Microscope Designed for High Resolution and High Sensitivity Mapping of Optical Path and Optical Path Gradient. Microsc Microanal 20:1350-1351
Mehta, Shalin B; Shribak, Michael; Oldenbourg, Rudolf (2013) Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity. J Opt 15:
Shribak, Michael (2013) Quantitative orientation-independent differential interference contrast microscope with fast switching shear direction and bias modulation. J Opt Soc Am A Opt Image Sci Vis 30:769-82
Shribak, Michael (2013) Using liquid crystal variable retarders for fast modulation of bias and shear direction in quantitative differential interference contrast (DIC) microscope. Proc SPIE Int Soc Opt Eng 8589: