Cilia are thread-like microtubule-based cell extensions which function in cell locomotion, fluid transport, and signaling. Many developmental disorders and diseases are caused by defects in ciliary function and assembly. To assemble cilia of a specific size and composition, cells have to transport hundreds of different proteins from the cell body into the organelle. Intraflagellar transport (IFT), a bidirectional motility of protein particles along ciliary microtubules, is assumed to be the major pathway for protein transport in cilia. IFT is required for ciliary assembly, maintenance, and signaling, however, it remains largely unknown which proteins are transported by IFT. It is also unclear where in the cilium cargoes are unloaded from IFT and whether the amount of protein transported by IFT is regulated. Because ciliary proteins are likely to be transported as single molecules or in small clusters, the analysis of their transport requires a highly sensitive imaging technique. Using Total Internal Reflection Fluorescence (TIRF) microscopy, we have established in vivo imaging of protein transport by IFT in cilia. We will analyze protein transport in cilia using the unicelluar model Chlamydomonas reinhardtii, which allows us to combine high resolution imaging in cilia with genetic manipulation and biochemical analysis of the organelle. We performed a comprehensive analysis of ciliary transport of the axonemal protein DRC4 and showed that DRC4-GFP depends on IFT for ciliary entry and distribution along the organelle.
In Specific Aim 1, we will image distinct proteins selected from different ciliary compartments and substructures to determine how they interact with IFT to move into cilia. We will address the question of how IFT particles serve as carriers for many distinct proteins and how IFT transports proteins in the correct ratio into the organelle. We will test whether protein loading onto IFT particles depends on protein supply in the cell body and to which extent unloading of cargoes from IFT is spatially controlled. Our data show that the transport frequency of DRC4 is greatly increased when cilia grow, suggesting that the capacity of the IFT pathway can be modulated. The regulation of IFT is the focus of Specific Aim 2. We will analyze whether IFT particles isolated from growing and steady-state cilia are biochemically distinct and how cargo transport is affected in IFT mutants with small defects in the particle. The control of cargo influx is likely to be a prerequisite to establish a specific length of cilia, which is critical for its motile and signaling functions. We ill analyze IFT and cargo transport in mutants with defects in ciliary length regulation such as long flagella 2 (lf2). LF2 encodes a widely conserved CDK-like kinase with an emerging role in disease. IFT is disturbed in lf2 cilia;we will test the hypothesis that LF2 kinase is a regulator f IFT, which when defective results in overloading of IFT particles. We noted that IFT proteins accumulate in mutants with structural defects in cilia, which might indicate a feedback mechanism on the IFT pathway which alerts the cell of incorrectly assembled cilia. We will test whether cells use the IFT pathway to monitor the correct size and structure of cilia.

Public Health Relevance

Defects in ciliary protein transport have been related to numerous human diseases such as kidney disease, blindness, and obesity. We have established Chlamydomonas reinhardtii as a unicellular model for high resolution in vivo imaging of protein transport in cilia. We will analyze how distinct proteins are loaded and unloaded from intraflagellar transport particles, and how this transport is regulated.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Georgia
Schools of Arts and Sciences
United States
Zip Code
Harris, J Aaron; Liu, Yi; Yang, Pinfen et al. (2016) Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol Biol Cell 27:295-307
Tran, Pamela V; Lechtreck, Karl F (2016) An age of enlightenment for cilia: The FASEB summer research conference on the ""Biology of Cilia and Flagella"". Dev Biol 409:319-28
Jiang, Yu-Yang; Lechtreck, Karl; Gaertig, Jacek (2015) Total internal reflection fluorescence microscopy of intraflagellar transport in Tetrahymena thermophila. Methods Cell Biol 127:445-56
Lechtreck, Karl F (2015) IFT-Cargo Interactions and Protein Transport in Cilia. Trends Biochem Sci 40:765-78
Craft, Julie M; Harris, J Aaron; Hyman, Sebastian et al. (2015) Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J Cell Biol 208:223-37
Vasudevan, Krishna Kumar; Jiang, Yu-Yang; Lechtreck, Karl F et al. (2015) Kinesin-13 regulates the quantity and quality of tubulin inside cilia. Mol Biol Cell 26:478-94