Cilia are thread-like microtubule-based cell extensions which function in cell locomotion, fluid transport, and signaling. Many developmental disorders and diseases are caused by defects in ciliary function and assembly. To assemble cilia of a specific size and composition, cells have to transport hundreds of different proteins from the cell body into the organelle. Intraflagellar transport (IFT), a bidirectional motility of protein particles along ciliary microtubules, is assumed to be the major pathway for protein transport in cilia. IFT is required for ciliary assembly, maintenance, and signaling, however, it remains largely unknown which proteins are transported by IFT. It is also unclear where in the cilium cargoes are unloaded from IFT and whether the amount of protein transported by IFT is regulated. Because ciliary proteins are likely to be transported as single molecules or in small clusters, the analysis of their transport requires a highly sensitive imaging technique. Using Total Internal Reflection Fluorescence (TIRF) microscopy, we have established in vivo imaging of protein transport by IFT in cilia. We will analyze protein transport in cilia using the unicelluar model Chlamydomonas reinhardtii, which allows us to combine high resolution imaging in cilia with genetic manipulation and biochemical analysis of the organelle. We performed a comprehensive analysis of ciliary transport of the axonemal protein DRC4 and showed that DRC4-GFP depends on IFT for ciliary entry and distribution along the organelle.
In Specific Aim 1, we will image distinct proteins selected from different ciliary compartments and substructures to determine how they interact with IFT to move into cilia. We will address the question of how IFT particles serve as carriers for many distinct proteins and how IFT transports proteins in the correct ratio into the organelle. We will test whether protein loading onto IFT particles depends on protein supply in the cell body and to which extent unloading of cargoes from IFT is spatially controlled. Our data show that the transport frequency of DRC4 is greatly increased when cilia grow, suggesting that the capacity of the IFT pathway can be modulated. The regulation of IFT is the focus of Specific Aim 2. We will analyze whether IFT particles isolated from growing and steady-state cilia are biochemically distinct and how cargo transport is affected in IFT mutants with small defects in the particle. The control of cargo influx is likely to be a prerequisite to establish a specific length of cilia, which is critical for its motile and signaling functions. We ill analyze IFT and cargo transport in mutants with defects in ciliary length regulation such as long flagella 2 (lf2). LF2 encodes a widely conserved CDK-like kinase with an emerging role in disease. IFT is disturbed in lf2 cilia; we will test the hypothesis that LF2 kinase is a regulator f IFT, which when defective results in overloading of IFT particles. We noted that IFT proteins accumulate in mutants with structural defects in cilia, which might indicate a feedback mechanism on the IFT pathway which alerts the cell of incorrectly assembled cilia. We will test whether cells use the IFT pathway to monitor the correct size and structure of cilia.

Public Health Relevance

Defects in ciliary protein transport have been related to numerous human diseases such as kidney disease, blindness, and obesity. We have established Chlamydomonas reinhardtii as a unicellular model for high resolution in vivo imaging of protein transport in cilia. We will analyze how distinct proteins are loaded and unloaded from intraflagellar transport particles, and how this transport is regulated.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM110413-03
Application #
9023563
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Gindhart, Joseph G
Project Start
2014-06-10
Project End
2019-02-28
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Georgia
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Wingfield, Jenna L; Lechtreck, Karl-Ferdinand; Lorentzen, Esben (2018) Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem 62:753-763
Liu, Peiwei; Lechtreck, Karl F (2018) The Bardet-Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc Natl Acad Sci U S A 115:E934-E943
Louka, Panagiota; Vasudevan, Krishna Kumar; Guha, Mayukh et al. (2018) Proteins that control the geometry of microtubules at the ends of cilia. J Cell Biol 217:4298-4313
Lechtreck, Karl F; Mengoni, Ilaria; Okivie, Batare et al. (2018) In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton (Hoboken) 75:352-362
Lechtreck, Karl F; Van De Weghe, Julie C; Harris, James Aaron et al. (2017) Protein transport in growing and steady-state cilia. Traffic 18:277-286
Wingfield, Jenna L; Mengoni, Ilaria; Bomberger, Heather et al. (2017) IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. Elife 6:
Liu, Yi; Visetsouk, Mike; Mynlieff, Michelle et al. (2017) H+- and Na+- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga Chlamydomonas. Elife 6:
Snouffer, Ashley; Brown, Desmond; Lee, Hankyu et al. (2017) Cell Cycle-Related Kinase (CCRK) regulates ciliogenesis and Hedgehog signaling in mice. PLoS Genet 13:e1006912
Harris, J Aaron; Liu, Yi; Yang, Pinfen et al. (2016) Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol Biol Cell 27:295-307
Kubo, Tomohiro; Brown, Jason M; Bellve, Karl et al. (2016) Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 129:2106-19

Showing the most recent 10 out of 17 publications