Much of our general understanding of coactivator function stems from characterizations of the p160/Steroid Receptor Coactivator (SRC) family of coregulators, which comprises SRC-1, -2, and -3 full length (SRC-3FL). Our prior work revealed that coactivators are controlled by a complex posttranslational modification (PTM) code that triggers a multitude of changes to regulate their molecular functions. Such PTM-induced changes explain how a single SRC coregulates diverse transcriptional outputs that enable the execution of wide-ranging physiological and pathophysiological responses, including even nongenomic activities in the cytoplasm and cell membrane. These non-nuclear roles for coactivators have been significantly expanded through our discovery of a new SRC-3 isoform (SRC-3?4) which functions as an essential molecular adaptor for growth factor induced signaling at the plasma membrane. Because our recent data suggesting that crosstalk between SRC- 3FL (from the nucleus) and SRC-3 ?4 (at the plasma membrane) is critical for coordinate control of cell proliferation and motility, expansion of this concept will be a major focus of this renewal application. Finally, our preliminary data show that Gene Regulated by Estrogen in Breast -1 (GREB1 (previously known as an estrogen target)) plays a critical role in the determination of the ER- positive luminal epithelial cell type and in the response of the differentiated target cell to estrogen. Therefore, a major element of this proposal will be to determine how ER, SRC-3FL and GREB1 interact to maintain identity of the luminal epithelial cell during its normal proliferative response to estrogen and promote loss of differentiation during mammary tumorigenesis.

Public Health Relevance

SRC-3 full length (SRC-3FL) and SRC-3 ?4 are controlled by complex posttranslational modifications that regulate their genomic and non-genomic functions in the mammary epithelium. Here, we describe new findings that demonstrate an important signaling relationship between the SRC-3 isoforms, the estrogen receptor (ER) and GREB1 (an estrogen receptor target gene) which are important for maintaining mammary epithelial cell identity and its responsiveness to hormone. This proposal is designed to elucidate how these proteins function together to control events in the cell nucleus and membrane to regulate the normal and pathological biology of distinct cell types in the mammary epithelium.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
2R01HD007857-41
Application #
8236100
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Yoshinaga, Koji
Project Start
1977-05-01
Project End
2017-02-28
Budget Start
2012-04-01
Budget End
2013-02-28
Support Year
41
Fiscal Year
2012
Total Cost
$501,957
Indirect Cost
$181,218
Name
Baylor College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Dasgupta, Subhamoy; O'Malley, Bert W (2014) Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. J Mol Endocrinol 53:R47-59
Feng, Qin; Zhang, Zheng; Shea, Martin J et al. (2014) An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res 24:809-19
Reineke, Erin L; Benham, Ashley; Soibam, Benjamin et al. (2014) Steroid receptor coactivator-2 is a dual regulator of cardiac transcription factor function. J Biol Chem 289:17721-31
Dasgupta, Subhamoy; Lonard, David M; O'Malley, Bert W (2014) Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 65:279-92
Motamed, Massoud; Rajapakshe, Kimal I; Hartig, Sean M et al. (2014) Steroid receptor coactivator 1 is an integrator of glucose and NAD+/NADH homeostasis. Mol Endocrinol 28:395-405
Wang, Ying; Lonard, David M; Yu, Yang et al. (2014) Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 74:1506-17
Wang, Wei; Bian, Ka; Vallabhaneni, Sreeram et al. (2014) ERK3 promotes endothelial cell functions by upregulating SRC-3/SP1-mediated VEGFR2 expression. J Cell Physiol 229:1529-37
Kommagani, Ramakrishna; Szwarc, Maria M; Kovanci, Ertug et al. (2014) A murine uterine transcriptome, responsive to steroid receptor coactivator-2, reveals transcription factor 23 as essential for decidualization of human endometrial stromal cells. Biol Reprod 90:75
Stashi, Erin; York, Brian; O'Malley, Bert W (2014) Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab 25:337-47
Szwarc, Maria M; Kommagani, Ramakrishna; Jeong, Jae-Wook et al. (2014) Perturbing the cellular levels of steroid receptor coactivator-2 impairs murine endometrial function. PLoS One 9:e98664

Showing the most recent 10 out of 18 publications