Mammalian sperm are not able to fertilize eggs immediately after ejaculation. They acquire fertilization capacity in the female tract in a process known as capacitation. Initially, capacitation was defined using fertilization as an end-point. However, a variety of evidence suggests that the functional changes occurring in the sperm during capacitation are not one event, but a combination of sequential and concomitant processes. These processes are associated with changes in the motility pattern (e.g. hyperactivation) and with preparation of sperm to undergo an agonist-stimulated acrosome reaction. At the molecular level, capacitation is associated with the activation of a cAMP signaling pathway, increase in intracellular pH, changes in the sperm plasma membrane potential, increase in tyrosine phosphorylation and with up-regulation of intracellular Ca2+ concentration ([Ca2+]i). In particular Ca2+ plays central roles in the regulation of both hyperactivation and the AR. However, the molecular mechanisms that control [Ca2+]i in sperm are not well established. The central hypothesis underlying this proposal posits that hyperactivation is the consequence of crosstalk between cAMP and Ca2+-depending signaling pathways. The objective of this proposal is to understand how Ca2+ and other signaling pathways (e.g. increase in pHi, cAMP and changes in Em) integrate during capacitation.

Public Health Relevance

Difficulties in earlier efforts to fertilize mammalian eggs in vitro were due mainly to a lack of comprehension of sperm physiology. This proposal is aimed to understand the molecular basis of sperm capacitation with emphasis in the regulation of the crosstalk between Ca2+ homeostasis and other signaling pathways in sperm. Accomplishment of these goals will provide tools for improving current Assisted Reproductive Technology (ART) methods and to identify novel contraceptive targets.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
2R01HD038082-12A1
Application #
8697214
Study Section
Cellular, Molecular and Integrative Reproduction Study Section (CMIR)
Program Officer
Moss, Stuart B
Project Start
2000-07-01
Project End
2019-03-31
Budget Start
2014-06-02
Budget End
2015-03-31
Support Year
12
Fiscal Year
2014
Total Cost
$312,770
Indirect Cost
$100,660
Name
University of Massachusetts Amherst
Department
Veterinary Sciences
Type
Schools of Earth Sciences/Natur
DUNS #
153926712
City
Amherst
State
MA
Country
United States
Zip Code
01003
Gervasi, María G; Xu, Xinran; Carbajal-Gonzalez, Blanca et al. (2018) The actin cytoskeleton of the mouse sperm flagellum is organized in a helical structure. J Cell Sci 131:
Tourzani, Darya A; Paudel, Bidur; Miranda, Patricia V et al. (2018) Changes in Protein O-GlcNAcylation During Mouse Epididymal Sperm Maturation. Front Cell Dev Biol 6:60
Stival, Cintia; Ritagliati, Carla; Xu, Xinran et al. (2018) Disruption of protein kinase A localization induces acrosomal exocytosis in capacitated mouse sperm. J Biol Chem 293:9435-9447
Romarowski, Ana; Velasco Félix, Ángel G; Torres Rodríguez, Paulina et al. (2018) Super-resolution imaging of live sperm reveals dynamic changes of the actin cytoskeleton during acrosomal exocytosis. J Cell Sci 131:
Orta, Gerardo; de la Vega-Beltran, José Luis; Martín-Hidalgo, David et al. (2018) CatSper channels are regulated by protein kinase A. J Biol Chem 293:16830-16841
Luque, Guillermina M; Dalotto-Moreno, Tomas; Martín-Hidalgo, David et al. (2018) Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 233:9685-9700
Puga Molina, Lis C; Pinto, Nicolás A; Torres Rodríguez, Paulina et al. (2017) Essential Role of CFTR in PKA-Dependent Phosphorylation, Alkalinization, and Hyperpolarization During Human Sperm Capacitation. J Cell Physiol 232:1404-1414
Gervasi, M G; Visconti, P E (2017) Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 5:204-218
Stival, Cintia; Puga Molina, Lis del C; Paudel, Bidur et al. (2016) Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. Adv Anat Embryol Cell Biol 220:93-106
Romarowski, Ana; Sánchez-Cárdenas, Claudia; Ramírez-Gómez, Héctor V et al. (2016) A Specific Transitory Increase in Intracellular Calcium Induced by Progesterone Promotes Acrosomal Exocytosis in Mouse Sperm. Biol Reprod 94:63

Showing the most recent 10 out of 92 publications