Congenital heart defects occur in nearly 1% of human live births. Outflow tract malformations comprise nearly 40% of these and are lethal if unrepaired. Myocardium at the arterial pole of the heart in the outflow tract and right ventricle derives from a precursor population within the second heart field (SHF). We have discovered that Fibroblast Growth Factor 8 (Fgf8) operates high in a signaling cascade that regulates SHF behavior and the identity of outflow tract myocardial cells. These myocardial cells normally have a "nonworking" identity with specialized secretory, signaling and cell biologic functions that are critical for outflow tract morphogenesis. In Fgf8 conditional mouse mutants, many aspects of outflow tract myocardial identity are "mistaken";the mutant myocardium does not perform the secretory and signaling functions required for downstream endothelial and neural crest behaviors during outflow tract remodeling. Our data support the overriding hypothesis that an autocrine Fgf signaling loop in the SHF is required for outflow tract myocardial precursors to correctly differentiate and achieve their unique identity. The goals of this proposal are to: determine the bases for distinct outflow tract (OFT) phenotypes seen after Fgf8 and Fgf receptor ablation in different temporospatial domains;identify Fgf8-dependent pathways in the SHF and in pharyngeal endoderm;define the identity of SHF-derived myocardial cells in Fgf8 mutant OFT and right ventricle;and discover direct transcriptional targets of Fgf8 effectors in the SHF.

Public Health Relevance

The importance of Fibroblast Growth Factor 8 (Fgf8) function for embryonic cardiovascular development is well established, but the molecular and cellular mechanisms whereby this signaling protein regulates development of the heart are still unknown. The specific research objective is to determine how Fgf8 signaling to heart precursors controls the identity of their progeny in the outflow tract of the heart. We also seek to determine how Fgf8 influences the ability of the myocardial cells to perform signaling and secretory functions that are required for behavior of adjacent cell types during outflow tract development. This research is highly relevant to human birth defects and disease because congenital heart defects occur in nearly 1% of human live births and malformations of the outflow tract comprise nearly 40% of these and are lethal if unrepaired.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CVS-F (02))
Program Officer
Javois, Lorette Claire
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Geisinger Clinic
United States
Zip Code
Tao, Ye; Zhang, Min; Li, Lele et al. (2014) Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ Cardiovasc Genet 7:23-32
Bertrand, Nicolas; Roux, Marine; Ryckebusch, Lucile et al. (2011) Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 353:266-74
Urness, Lisa D; Bleyl, Steven B; Wright, Tracy J et al. (2011) Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev Biol 356:383-97
Guo, Chaoshe; Sun, Ye; Zhou, Bin et al. (2011) A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Invest 121:1585-95
Watanabe, Yusuke; Miyagawa-Tomita, Sachiko; Vincent, Stephane D et al. (2010) Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res 106:495-503
Calmont, Amelie; Ivins, Sarah; Van Bueren, Kelly Lammerts et al. (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173-83
Park, Eon Joo; Watanabe, Yusuke; Smyth, Graham et al. (2008) An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 135:3599-610
Park, Eon Joo; Sun, Xiaoxia; Nichol, Peter et al. (2008) System for tamoxifen-inducible expression of cre-recombinase from the Foxa2 locus in mice. Dev Dyn 237:447-53
Frank, Deborah U; Elliott, Sarah A; Park, Eon Joo et al. (2007) System for inducible expression of cre-recombinase from the Foxa2 locus in endoderm, notochord, and floor plate. Dev Dyn 236:1085-92
Moon, Anne M (2006) Mouse models for investigating the developmental basis of human birth defects. Pediatr Res 59:749-55

Showing the most recent 10 out of 16 publications