The long-term goal of this project is to determine the mechanisms and associated regulatory cascades that account for epithelial HCO3- transport with particular focus on the male reproductive tract. Distinct pHs are required for sperm maturation, storage and activation in the deferent duct. Diseases of epithelial anion transport such as cystic fibrosis result in male infertility. We established protocols to study ion transport in the intact porcine vas deferens, in freshly isolated human and porcine tissues, in primary cell cultures, and in immortalized epithelial cells. Each of these cell systems exhibits properties observed in the intact tissue. This remarkable set of experimental systems will be used to achieve the following specific aims.
Aim 1 : To test alternative models of HCO3- transport. The simplest model has a Na? cotransporter and a Na?? cotransporter in the basolateral membrane, and CFTR in the apical membrane. Additional HCO3- transporters are present in vas deferens cells. We will determine the functional contribution of these components and specifically determine whether there is segmental variation in vas deferens secretory function.
Aim 2 : To determine pathways that modulate HCO3- secretion across vas deferens epithelium. We hypothesize that physiological transmitters differentially regulate Cl- and HCO3- secretion to achieve luminal fluid volumes with distinct pH. Norepinephrine and adenosine stimulate PKA whereas oxytocin stimulates PKC to achieve anion secretion. Bradykinin stimulates anion secretion by an undetermined mechanism that requires cyclooxygenase activity and the response is enhanced by testosterone pretreatment. We will focus first on bradykinin to elucidate the receptor(s) and cytosolic pathway(s) that accounts for these observations and determine the relative effects on HCO3- and/or Cl- secretion. Further, we will determine the agonist-stimulated signaling pathways that are integrated to actively modify the fluid environment to which sperm are exposed.
Aim 3 : To develop an immortalized human vas deferens cell line. The porcine vas deferens epithelial cell line that we developed is a valuable research tool. However, greater value will be associated with an analogous human cell line because numerous tools that are targeted for use with human tissues are available. Thus, we will develop another cell line for studies that can be extrapolated for inferences to the human duct.
Aim 4 : To assess, in vivo, dynamic changes in epithelial HCO3- transport. Vas deferens lumen pH has not been systematically assessed in any species although this parameter is critical for sperm storage and activation. Results will provide a foundation in reproductive physiology for the transport mechanisms that are identified by in vitro assays. Results from these studies will identify targets for pharmacological interventions to modulate luminal pH with the most direct application to male fertility. We will establish a mechanistic model(s) to account for acute modulation of epithelial HCO3- transport that can be extended to, and compared with, other bodily systems. Cells lining the male reproductive tract actively regulate the pH of the internal solution, which is important for sperm maturation and activation. We developed and will use a number of experimental systems from human and pig reproductive duct to determine how these cells regulate the pH and volume of the fluid to which sperm are exposed. Results from these studies will identify methods to treat male infertility or to implement male contraception.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project (R01)
Project #
Application #
Study Section
Cellular and Molecular Biology of the Kidney Study Section (CMBK)
Program Officer
Moss, Stuart B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Kansas State University
Anatomy/Cell Biology
Schools of Veterinary Medicine
United States
Zip Code
Pierucci-Alves, Fernando; Akoyev, Vladimir; Schultz, Bruce D (2015) Bicarbonate exchangers SLC26A3 and SLC26A6 are localized at the apical membrane of porcine vas deferens epithelium. Physiol Rep 3:
Yi, Sheng; Pierucci-Alves, Fernando; Schultz, Bruce D (2013) Transforming growth factor-?1 impairs CFTR-mediated anion secretion across cultured porcine vas deferens epithelial monolayer via the p38 MAPK pathway. Am J Physiol Cell Physiol 305:C867-76
Schultz, Bruce D (2013) Pore directions for the expression of a Ca2+-activated chloride channel. J Physiol 591:3453-4
Schultz, Bruce D (2012) Airway epithelial cells: 'Bicarbonate in' ? 'Bicarbonate out'. J Physiol 590:5263-4
Pierucci-Alves, Fernando; Yi, Sheng; Schultz, Bruce D (2012) Transforming growth factor beta 1 induces tight junction disruptions and loss of transepithelial resistance across porcine vas deferens epithelial cells. Biol Reprod 86:36
Schultz, Bruce (2011) Clarifying the role of (apical) K+ channels in Na+ and Cl- transport. J Physiol 589:3689-90
Pierucci-Alves, Fernando; Akoyev, Vladimir; Stewart 3rd, Jimmie C et al. (2011) Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 85:442-51
Pierucci-Alves, Fernando; Duncan, Cameron L; Lillich, James D et al. (2010) Porcine vas deferens luminal pH is acutely increased by systemic xylazine administration. Biol Reprod 82:132-5
Pierucci-Alves, Fernando; Duncan, Cameron L; Schultz, Bruce D (2009) Testosterone upregulates anion secretion across porcine vas deferens epithelia in vitro. Biol Reprod 81:628-35
Schultz, Bruce D (2008) Purinergic agonists flex vas deferens muscle. J Physiol 586:5287