Trophoblast cell lineages form the outer epithelial component of the placenta and provide the functional bridge between the fetus and the mother. Multiple transcription factors have been implicated in the development and function of trophoblast cell subtypes including trophoblast stem (TS) cells. For example, transcription factor caudal-type homeobox 2 (CDX2) is important for the derivation of trophectoderm and proliferation of TS cells. Interestingly, transcription factors, GATA2 and GATA3, have also been implicated in the transcriptional regulation of trophoblast cell-specific gene expression. However, molecular mechanisms of GATA factor function in trophoblast cell lineages are poorly understood. Although the expression of several placental genes is reduced in Gata2-/- and Gata3-/- mice, the lack of an overt placental phenotype led to the prediction that these two factors might function in a complementary fashion during placental development. However, experiments have not been done in a context where both GATA2 and GATA3 are limiting. In addition, GATA factor expression pattern during trophoblast lineage differentiation, their mode of function in endogenous chromatin domains, and their target genes in trophoblast cells are poorly understood. We identified a novel function of GATA3, in which it is selectively expressed in the trophectoderm (TE) of developing mouse embryo, regulates expression of key genes in TE lineage, and is involved in morula to blastocyst transformation. In addition, we demonstrated that, during trophoblast giant cell differentiation, switch in chromatin occupancy between GATA3 and GATA2 is an important mechanism for the transcriptional regulation of GATA target genes including Cdx2. Therefore, we will utilize novel strategies to elucidate role of GATA factors in trophoblast cell differentiation and function.
Three specific aims are proposed.
Aim 1 will test the hypothesis that GATA factors regulate Cdx2 expression during development of the trophoblast lineage. We will examine this by determining GATA2 and GATA3 expression pattern in pre-implantation mice embryos, by identifying GATA factor binding regions at the endogenous Cdx2 chromatin domain in trophoblast cells, and by generating a genomic Cdx2 reporter.
Aim 2 will determine the role of GATA factors during trophoblast cell development and differentiation both in vitro and in vivo. We will test the hypothesis that loss of both GATA2 and GATA3 will impair trophoblast lineage differentiation. We will test this by establishing a TS cell system, in which both GATA2 and GATA3 will be limiting (in vitro approach), and by knocking-down GATA2 and GATA3 by RNA interference in the trophoblast cell lineage in vivo.
In aim 3, using a chromatin immunoprecipitation coupled with genomic microarray approach, we will test whether GATA2 and GATA3 have common and unique target genes in trophoblast cells. We will also determine whether GATA3 have differentiation stage specific target genes.

Public Health Relevance

Early pregnancy loss is a major public health concern. One of the major causes of early pregnancy loss is defective function of the trophectoderm. In addition, defects in placental development due to impaired trophoblast cell functions lead to pregnancies that are at risk for miscarriage and intrauterine growth retardation, and are associated with preeclampsia, a leading cause of maternal death and premature birth. Therefore, understanding the molecular mechanisms of development and function of trophoblast cell lineages is critical to gaining insights into important features of pregnancy loss and pregnancy associated disorders.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Pregnancy and Neonatology Study Section (PN)
Program Officer
Yoshinaga, Koji
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas
Schools of Medicine
Kansas City
United States
Zip Code
Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar et al. (2014) Regulation of mitochondrial function and cellular energy metabolism by protein kinase C-?/?: a novel mode of balancing pluripotency. Stem Cells 32:2880-92
Knott, Jason G; Paul, Soumen (2014) Transcriptional regulators of the trophoblast lineage in mammals with hemochorial placentation. Reproduction 148:R121-36
Paul, Arindam; Paul, Soumen (2014) The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front Biosci (Landmark Ed) 19:605-18
Paul, A; Gunewardena, S; Stecklein, S R et al. (2014) PKC?/? signaling promotes triple-negative breast cancer growth and metastasis. Cell Death Differ 21:1469-81
Rajendran, Ganeshkumar; Dutta, Debasree; Hong, James et al. (2013) Inhibition of protein kinase C signaling maintains rat embryonic stem cell pluripotency. J Biol Chem 288:24351-62
Saha, Biswarup; Home, Pratik; Ray, Soma et al. (2013) EED and KDM6B coordinate the first mammalian cell lineage commitment to ensure embryo implantation. Mol Cell Biol 33:2691-705
Home, Pratik; Saha, Biswarup; Ray, Soma et al. (2012) Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci U S A 109:7362-7
Dutta, Debasree; Ray, Soma; Home, Pratik et al. (2011) Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem Cells 29:618-28