Motor skill training and transcranial direct current stimulation (tDCS) have separately been shown to alter cortical excitability and enhance motor function in humans. Their combination is appealing for augmenting motor recovery in stroke patients, and this is an area presently under heavy investigation globally. We had previously proposed that the success of transcranial direct current stimulation (tDCS) as a complementary therapeutic tool in physical neurorehabilitation may be contingent upon a more precise knowledge of the circumstances under which the two techniques interact, and the subsequent behavioral outcome. To test this we applied tDCS with conventional parameters (polarity, location, intensity and duration), but manipulated the timing of application in relation to a simple robotic motor practice task, in affected muscles of hemiplegic patients. We showed a profound effect of timing. We showed that performance improvement over one session of practice was differentially affected by tDCS depending on the timing of application. 20 mins of robotic visuomotor training only, led to a preferential increase in movement speed without a loss of accuracy. tDCS applied at any of the timings obliterated this effect, yet when tDCS was applied before training, the effect was substituted for an improvement in smoothness. Movement smoothness is associated with more advanced stages of motor learning and has high correlation with functional clinical scales. We showed for the first time that the timing of tDCS application has functional significance, that tDCS applied prior to training can be beneficial for voluntary behavior, and that tDCS effects may not simply be additive to training effects, but may change the nature of the training effect. We have separately reported in a randomized-controlled clinical trial, that upperlimb robotic training alone over 12 weeks can improve clinical function of chronic stroke patients. Based on our results with tDCS and robotic training, we hypothesize that the same repeated sessions of robotic training, but preceded by tDCS, would lead to a sustained and functional change greater than robotic training alone. In the proposed training study, 66 stable chronic stroke patients will be randomized to receive sham or real tDCS prior to robotic upperlimb training, and will be assessed at 3 levels of change: (i) clinical, (ii) kinematic, and (iii) neurophysiologic. We will determine if clinical function can be improved and sustained with tDCS-robotic training, the precise kinematic aspects of movement, and cortical physiology changes that underlie functional improvements.

Public Health Relevance

Stroke survivors are often left with residual motor dysfunction, which despite the best-known care results in substantial personal, social and economic cost. We suggest that Transcranial Direct Current Stimulation (tDCS) delivered prior to robotic motor training will improve clinical function when performed over 12 weeks of training. We propose to test cortical neurophysiology and kinematic changes in relation to improved clinical function to report the specific aspects of movement control that are enhanced, and the underlying brain plasticity. This will help understand the physiological and behavioral aspects of this emerging rehabilitation strategy, and may be useful to guide clinical trials for optimizing motor recovery in stroke, and ultimately to have broader application to other neurological disorders.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD069776-03
Application #
8610935
Study Section
Musculoskeletal Rehabilitation Sciences Study Section (MRS)
Program Officer
Michel, Mary E
Project Start
2012-03-01
Project End
2017-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
3
Fiscal Year
2014
Total Cost
$632,372
Indirect Cost
$208,011
Name
Winifred Masterson Burke Med Research Institute
Department
Type
DUNS #
780676131
City
White Plains
State
NY
Country
United States
Zip Code
10605
Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M D et al. (2016) Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 10:73
Meehan 3rd, William P; Taylor, Alex M; Berkner, Paul et al. (2016) Division III Collision Sports Are Not Associated with Neurobehavioral Quality of Life. J Neurotrauma 33:254-9
Grimaldi, Giuliana; Argyropoulos, Georgios P; Bastian, Amy et al. (2016) Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist 22:83-97
Oberman, Lindsay M; Enticott, Peter G; Casanova, Manuel F et al. (2016) Transcranial magnetic stimulation in autism spectrum disorder: Challenges, promise, and roadmap for future research. Autism Res 9:184-203
Bashir, Shahid; Vernet, Marine; Najib, Umer et al. (2016) Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restor Neurol Neurosci 34:677-89
Caparelli-Dáquer, E M; Valente, A F; Nigri, F et al. (2016) A Halo-Shaped Electrode Holder System for HD-tDCS is a Practical and Flexible Alternative to the EEG Cap 4×1-Ring Montage. Brain Stimul 9:153-5
Gomes-Osman, Joyce; Cortes, Mar; Guest, James et al. (2016) A Systematic Review of Experimental Strategies Aimed at Improving Motor Function after Acute and Chronic Spinal Cord Injury. J Neurotrauma 33:425-38
Tsagaris, K Zoe; Labar, Douglas R; Edwards, Dylan J (2016) A Framework for Combining rTMS with Behavioral Therapy. Front Syst Neurosci 10:82
Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B et al. (2016) Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS). PLoS One 11:e0152331
Rubio, Belen; Boes, Aaron D; Laganiere, Simon et al. (2016) Noninvasive Brain Stimulation in Pediatric Attention-Deficit Hyperactivity Disorder (ADHD): A Review. J Child Neurol 31:784-96

Showing the most recent 10 out of 50 publications