Neonatal hypoxic-ischemic (HI) brain injury results in devastating, life-long disability for the affected children. At present, hypothermia is the only treatment for neonatal HI and it is incompletely effective. 45% of treated infants still die or sustain severe neurodevelopmental disability following HI. Designing safe, effective, mechanistically novel adjuvant therapies is the highest priority in this field of research. In concert, there is a need to develop mechanistically-based, reliable biomarkers to track novel therapies and measure their efficacy. Our identification of programmed necrosis as a mechanism of injury in neonatal HI provides an opportunity to identify novel therapies. That programmed necrosis may be operative in neonatal HI is clinically compelling. Programmed necrosis, unlike classical necrosis, is regulated, treatable, and is well understood in vitro. How and whether hypothermia acts to inhibit programmed necrosis is unknown and very important to the successful development of adjuvant therapies for neonatal HI. The in vivo neural target of hypothermia and programmed necrosis inhibitors is also a gap in our knowledge. Effects of hypothermia on neurons are best known. Little is known about the effects of hypothermia on glia and nothing is known about the effects of programmed necrosis inhibitors. Glia, oligodendroglia and astrocytes, clearly contribute to the overall "encephalopathy" resulting from neonatal HI. Astrocytes, in particular, may play a pivotal role in initiation of and protection from HI by both hypothermia and programmed necrosis inhibitors. Because of their possible involvement in the initiation and response to HI injury and treatment, astrocytic release of glial fibrillary acid proein (GFAP) may be the reliable, regionally specific, mechanistically-based biomarker that we seek for neonatal HI brain injury. In this proposal, we will use an established model of neonatal HI and hypothermia address each of these research priorities and areas of knowledge gap. We will test the hypothesis that hypothermia provides neuroprotection following neonatal HI by interrupting programmed necrosis. Subsequently, using data from these experiments we will test combinations of hypothermia, anti-programmed necrosis and anti-apoptosis treatments for treatment of neonatal HI and GFAP as an experimental biomarker. In doing so we will forge new pathways in neonatal brain injury research These experiments address critical, timely, and highly relevant issues in neonatal brain injury.

Public Health Relevance

These studies address one of the highest priorities in neonatal brain injury;finding novel therapies to combine with our current treatment for neonatal hypoxic ischemic brain injury. Additionally, we will be applying a promising clinical biomarker to an experimental model, to test its ability to predict severity of injury and response to treatment. Results from these studies have the potential to fundamentally alter our understanding of how hypoxic ischemic injury causes brain damage and how to significantly improve treatment for this devastating injury.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project (R01)
Project #
Application #
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Urv, Tiina K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Elhaik, Eran; Pellegrini, Matteo; Tatarinova, Tatiana V (2014) Gene expression and nucleotide composition are associated with genic methylation level in Oryza sativa. BMC Bioinformatics 15:23
Elhaik, Eran; Tatarinova, Tatiana; Chebotarev, Dmitri et al. (2014) Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nat Commun 5:3513
Asberg, A; Bjerre, A; Neely, M (2014) New algorithm for valganciclovir dosing in pediatric solid organ transplant recipients. Pediatr Transplant 18:103-11
Chavez-Valdez, R; Martin, L J; Razdan, S et al. (2014) Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1. Neuroscience 260:106-19
Wu, Dan; Martin, Lee J; Northington, Frances J et al. (2014) Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med 72:1366-74
Wu, Dan; Reisinger, Dominik; Xu, Jiadi et al. (2014) Localized diffusion magnetic resonance micro-imaging of the live mouse brain. Neuroimage 91:12-20
Howlett, Jessica A; Northington, Frances J; Gilmore, Maureen M et al. (2013) Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy. Pediatr Res 74:525-35
Felton, T W; Goodwin, J; O'Connor, L et al. (2013) Impact of Bolus dosing versus continuous infusion of Piperacillin and Tazobactam on the development of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:5811-9
Sedghizadeh, Parish P; Jones, Allan C; LaVallee, Chris et al. (2013) Population pharmacokinetic and pharmacodynamic modeling for assessing risk of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol 115:224-32
Tatarinova, Tatiana; Elhaik, Eran; Pellegrini, Matteo (2013) Cross-species analysis of genic GC3 content and DNA methylation patterns. Genome Biol Evol 5:1443-56

Showing the most recent 10 out of 14 publications